• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

New technology development of cytological examination using computer analytical methods for early detection of malignant mesothelioma.

Research Project

Project/Area Number 16K15327
Research Category

Grant-in-Aid for Challenging Exploratory Research

Allocation TypeMulti-year Fund
Research Field Laboratory medicine
Research InstitutionShinshu University

Principal Investigator

Kimura Fumikazu  信州大学, 学術研究院保健学系, 講師 (10621849)

Co-Investigator(Kenkyū-buntansha) 太田 浩良  信州大学, 学術研究院保健学系, 教授 (50273107)
佐藤 之俊  北里大学, 医学部, 教授 (90321637)
Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2018: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2017: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2016: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
KeywordsMalignant mesothelioma / Cytology / Effusion / Image analysis / Texture analysis / Support vector machine / Cross validation / 悪性中皮腫 / 反応性中皮細胞 / 画像解析 / テクスチャ解析 / ガボールフィルタセット / 10-分割交差検証 / 1症例抜き交差検証 / Signal intensity / GLCM / Local binary pattern / Tamura特徴量 / texture analysis / signal intensity / Mesothelioma
Outline of Final Research Achievements

In this research, we revealed that features were extracted using signal intensity in whole nuclear area, morphological features, GLCM, chromatin ratio and signal intensity in euchromatin and heterochromatin region using Ohtsu thresholding, Local binary pattern, Tamura features, gaussian and gabor filter indicated characteristic of nuclear atypism of mesothelioma. Moreover, in the LSVM discriminant analysis, the accuracies of these texture analysis calculated using these features were 80-100%. Accuracy was calculated using the gabor filter among these texture methods showed the highest value. These methods seem to be a very useful for carrying out routine cytological examinations. We would like to effectively use the software created in this time for the routine cytological examinations.

Academic Significance and Societal Importance of the Research Achievements

細胞診検査は体の様々な部位から細胞を採取して、顕微鏡を用いて細胞の形から疾患を判断できる優れた検査法であるが、悪性中皮腫など一部の疾患は、ときに癌ではない炎症性の疾患などと判別が困難な場合がある。近年悪性中皮腫の罹患率が増加している中、早期発見・治療が重要になってくる。そこで人の目では判断が難しい悪性中皮腫をコンピュータの目で、早期発見、正確な診断を行うことで患者に寄与する。またこの方法が確立すれば、他の疾患の判別にも応用が可能になる。今回の研究成果によって、細胞診検査の補助診断ツールとして悪性中皮腫の早期にかつ正しい診断が行えるようになったと確信している。

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (6 results)

All 2019 2018 2017

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Open Access: 1 results) Presentation (4 results) (of which Invited: 2 results)

  • [Journal Article] Image quantification technology of the heterochromatin and euchromatin region for differential diagnosis in the lobular endocervical glandular hyperplasia.2019

    • Author(s)
      Kimura F, Kobayashi T, Kanai R, Kobayashi Y, Ohtani Y, Ota H, Yamaguchi M, Yokokawa Y, Uehara T, Ishii K.
    • Journal Title

      Diagn Cytopathol.

      Volume: 47 Issue: 6 Pages: 553-563

    • DOI

      10.1002/dc.24155

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Detection of Ki67 expression by analyzing texture of HE-stained Images: the effectiveness of signal intensity and co-occurrence matrix features2018

    • Author(s)
      Kimura F, Ishikawa M, Ahi ST, Atpelage C, Murakami Y, Watanabe J, Nagahashi H, Yamaguchi M.
    • Journal Title

      Analytical and Quantitative Cytology and Histology

      Volume: 40 Pages: 9-19

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] 情報工学的解析技術の基礎と病理組織・細胞診断へのアプローチ.2019

    • Author(s)
      木村文一、永田 毅.
    • Organizer
      第60回日本組織細胞化学会総会
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 病理画像解析によるアスベスト小体の自動検出.2019

    • Author(s)
      大谷勇陽、中村友哉、木村文一、佐藤之俊、小林幸 弘、上原剛、山口雅浩.
    • Organizer
      第183回 医用画像情報学会.
    • Related Report
      2019 Annual Research Report
  • [Presentation] 画像解析の基本と数理病理学への応用.2018

    • Author(s)
      木村文一
    • Organizer
      第52回生体応答科学研究セミナー
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 悪性中皮腫における客観的数量化技術開発および機械学習機による判別分析研究.2017

    • Author(s)
      木村文一、溝口貴弘、山口雅浩、村雲芳樹、太田浩良、佐藤之俊.
    • Organizer
      第56回日本臨床細胞学会秋期大会.
    • Related Report
      2017 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi