Project/Area Number |
16K16005
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Theory of informatics
|
Research Institution | Tokyo Institute of Technology |
Principal Investigator |
|
Project Period (FY) |
2016-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
|
Keywords | オンライン最適化 / オンラインアルゴリズム / 競合比解析 / 安定マッチング / ナップサック問題 / 劣モジュラ関数 / 劣モジュラ / 広告割当問題 / アルゴリズム / 最適化 |
Outline of Final Research Achievements |
I examined twelve types of natural stochastic input models for online optimization problems, and revealed the relationship between the theoretical performances of algorithms for the models. I have also successfully constructed an online algorithm for a video-ad allocation problem, and an algorithm for online knapsack problems with a resource buffer. In addition, by using online optimization techniques, I have analyzed equilibrium in dynamic games and constructed algorithms that find approximately stable matching.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究により,オンラインアルゴリズムの最悪時性能や平均時性能を評価するための枠組みについて,基本的な部分を整備することが完了できた.オンライン問題に対するアルゴリズム開発は,理論計算幾何学的に重要なだけでなく,機械学習やオペレーションズリサーチ,ネットワーク工学など様々な分野において応用上重要な課題でもある.そのため,本研究における各種入力モデルに対する統一的な成果が,実際に現場でアルゴリズムを用いるときの設計指針として用いられることが期待できる.
|