• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Statistical inference for rare event data and its application in clinical researches

Research Project

Project/Area Number 16K16014
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Statistical science
Research InstitutionThe Institute of Statistical Mathematics (2018)
Chiba University (2016-2017)

Principal Investigator

Nagashima Kengo  統計数理研究所, 医療健康データ科学研究センター, 特任准教授 (20510712)

Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Keywords生存時間解析 / 情報量規準 / サンプルサイズ設計 / モデル選択規準 / レアイベントデータ / 情報量基準 / モデル選択基準 / 統計数学 / サンプルサイズ
Outline of Final Research Achievements

Information criteria for Firth's penalized partial likelihood approach in Cox regression models were proposed and theoretical justification of the Heinze and Schemper's estimator was provided (Nagashima & Sato, Statistics in Medicine 2017, DOI: 10.1002/sim.7368). An AIC-type information criterion based on the risk function and BIC-type criterion were evaluated, which performed well under rare event data. The proposed AIC-type criterion was applied to prospective observational study data. It proved that the conditions of bias reduction for the cumulants in the Heinze & Schemper's estimator holds.
Moreover, sample size calculations for the Kaplan-Meier estimator in single-arm survival studies were proposed, and it was shown that the existing method uses an inappropriate approximation that can influence the accuracy especially under rare event data. This result was submitted to a peer-review journal.

Academic Significance and Societal Importance of the Research Achievements

本研究では,特にレアイベントデータにおけるCox回帰モデルにおける,各種統計量の漸近的性質等を明らかにし,新たな手法を提案した.これらの結果は同様の条件下でのさらなる応用・手法開発に繋がると考えられ,本研究の学術的意義は高いと考えられる.また,実際の臨床研究データへの適用や統計ソフトウェアの公開など,手法を実際に利用する際に活用できる参考情報も提供した.将来的には,臨床医学分野での共同研究を通じ,既存の方法では妥当な評価ができないケースにおける応用を目指す.臨床研究の成果として新たな知見が得られれば,実社会に貢献することが可能であり,意義深い結果をもたらすことが期待される.

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (5 results)

All 2018 2017 Other

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (1 results) Remarks (3 results)

  • [Journal Article] Information criteria for Firth's penalized partial likelihood approach in Cox regression models2017

    • Author(s)
      Kengo Nagashima, Yasunori Sato
    • Journal Title

      Statistics in Medicine

      Volume: 36 Issue: 21 Pages: 3422-3436

    • DOI

      10.1002/sim.7368

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Information criteria for Firth's penalized partial likelihood approach in Cox regression models2018

    • Author(s)
      長島健悟
    • Organizer
      統計数理研究所リスク解析戦略研究センター 第9回 生物統計ネットワークシンポジウム
    • Related Report
      2017 Research-status Report
  • [Remarks] Sample size calculation for one sample survival

    • URL

      https://nshi.jp/en/js/onesurvyr/

    • Related Report
      2018 Annual Research Report
  • [Remarks] Sample size calculation for one sample survival

    • URL

      https://nshi.jp/en/js/onesurvmst/

    • Related Report
      2018 Annual Research Report
  • [Remarks] Firth の方法を用いた場合のモデル選択規準について

    • URL

      http://nshi.jp/contents/stat/firthic/

    • Related Report
      2017 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi