• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Theory and application of unsupervised learning for Network data and functional data

Research Project

Project/Area Number 16K16024
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Statistical science
Research InstitutionOsaka University

Principal Investigator

Terada Yoshikazu  大阪大学, 基礎工学研究科, 助教 (10738793)

Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2016: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywords関数データ解析 / グラフ分割 / クラスタリング / 教師なし学習 / 半教師なし学習 / 機械学習 / Selective inference / 選択的推測 / 漸近理論 / Normalized cut / Spectral clustering / 半教師付き学習 / ネットワークデータ解析
Outline of Final Research Achievements

With recent advances in computer and measurement technologies, big and complicated data have been common in various application fields, and thus the importance of unsupervised learning has been recognized. In this research, I dealt with the following 4 research topics related to unsupervised learning for the complicated data: (1) I studied theoretical properties of graph-partitioning clustering method, (2) I developed a new semi-supervised learning method for functional data with theoretical guarantees and used the proposed algorithm to identify handball players who are at-risk for anterior cruciate ligament (ACL) injury based on ground reaction force data, (3) I developed a general approach via multiscale bootstrap to selective inference with theoretical guarantees, (4) I developed a new regularized subspace clustering algorithm for functional data which is based on a cluster-separation criterion in the finite-dimensional subspace.

Academic Significance and Societal Importance of the Research Achievements

本研究では,実社会への応用を想定し,応用上重要な問題に対して,新しい教師なし学習法の開発や理論的性質の解明を行っている.例えば,研究(1)では教師なし分類法において金字塔と呼べる広く用いられているクラスタリング法に関して,これまで明らかとなっていなかった重要な理論的性質を解明している.さらに,本研究では,理論研究にとどまらず,実社会の問題への応用を実際に行っている.実際に,研究(2)ではスポーツ医学の分野において,提案手法を適用することで怪我のリスクのある選手の特定に成功している.

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (27 results)

All 2019 2018 2017 2016 Other

All Int'l Joint Research (3 results) Journal Article (4 results) (of which Peer Reviewed: 1 results,  Open Access: 3 results) Presentation (20 results) (of which Int'l Joint Research: 5 results,  Invited: 13 results)

  • [Int'l Joint Research] Erasmus University Rotterdam(オランダ)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] Academia Sinica(Taiwan)

    • Related Report
      2017 Research-status Report
  • [Int'l Joint Research] Erasmus University Rotterdam(Netherlands)

    • Related Report
      2017 Research-status Report
  • [Journal Article] Kernel Normalized Cut: a Theoretical Revisit2019

    • Author(s)
      Yoshikazu Terada, Michio Yamamoto
    • Journal Title

      In Proceedings of International Conference on Machine Learning (ICML2019)

      Volume: 印刷中

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Selective inference for testing trees and edges in phylogenetics2019

    • Author(s)
      Hidetoshi Shimodaira, Yoshikazu Terada
    • Journal Title

      arXiv

      Volume: -

    • Related Report
      2018 Annual Research Report
    • Open Access
  • [Journal Article] Simple structure estimation via prenet penalization2018

    • Author(s)
      Kei Hirose, Yoshikazu Terada
    • Journal Title

      arXiv

      Volume: -

    • Related Report
      2018 Annual Research Report
    • Open Access
  • [Journal Article] Selective inference for the problem of regions via multiscale bootstrap2017

    • Author(s)
      Yoshikazu Terada, Hidetoshi Shimodaira
    • Journal Title

      arXiv

      Volume: 1 Pages: 1-48

    • Related Report
      2017 Research-status Report
  • [Presentation] 関数データに適したsubspace clusteringとその性質2018

    • Author(s)
      寺田吉壱, 山本倫生
    • Organizer
      大規模統計モデリングと計算統計V
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 関数データに対する部分空間クラスタリング法とその性質2018

    • Author(s)
      寺田吉壱, 山本倫生
    • Organizer
      2018年度統計関連学会連合大会
    • Related Report
      2018 Annual Research Report
  • [Presentation] マルチスケール・ブートストラップによるモデル選択後のselective inference2018

    • Author(s)
      寺田吉壱, 下平英寿
    • Organizer
      2018年度統計関連学会連合大会
    • Related Report
      2018 Annual Research Report
  • [Presentation] 複雑なデータに対する解析法の理論と応用2018

    • Author(s)
      寺田吉壱
    • Organizer
      横浜市立大学データサイエンス学部セミナー
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 関数データ解析における分類問題について2018

    • Author(s)
      寺田吉壱
    • Organizer
      RIMS研究集会「高次元量子雑音の統計モデリング」
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Subspace clustering for functional data2018

    • Author(s)
      Yoshikazu Terada, Michio Yamamoto
    • Organizer
      The 314th meeting of Hiroshima Statistics Study Group
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Selective inference for the problem of regions via multiscale bootstrap2018

    • Author(s)
      Yoshikazu Terada, Hidetoshi Shimodaira
    • Organizer
      HeKKSaGon Multidisciplinary Joint Workshop toward Fusions between Data and Mathematical Sciences
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Subspace clustering for functional data2018

    • Author(s)
      Yoshikazu Terada, Michio Yamamoto
    • Organizer
      The 2nd International Conference on Econometrics and Statistics (EcoSta2018)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Selective inference for the problem of regions via multiscale bootstrap2018

    • Author(s)
      Yoshikazu Terada, Hidetoshi Shimodaira
    • Organizer
      The 27th South Taiwan Statistics Conference and CIPS Annual Meeting 2018
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Semi-supervised learning for functional data2017

    • Author(s)
      Yoshikazu Terada
    • Organizer
      Conference of the International Federation of Classification Societies (IFCS2017)
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Semi-supervised classification for functional data and its applications2017

    • Author(s)
      Yoshikazu Terada
    • Organizer
      The 10th International Conference of the ERCIM WG on Computational and Methodological Statistics (CMStatistics 2017)
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] マルチスケール・ブートストラップ法による近似的に不偏なselective inferenceとその応用2017

    • Author(s)
      寺田 吉壱,下平 英寿
    • Organizer
      研究集会 大規模統計モデリングと計算統計IV
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 関数データ解析のスポーツ医学への応用2017

    • Author(s)
      寺田 吉壱,小笠原 一生,中田 研
    • Organizer
      2017年度統計関連学会連合大会
    • Related Report
      2017 Research-status Report
  • [Presentation] マルチスケール・ブートストラップによる近似的に不偏なselective inference2017

    • Author(s)
      寺田 吉壱,下平 英寿
    • Organizer
      2017年度統計関連学会連合大会
    • Related Report
      2017 Research-status Report
  • [Presentation] 関数データ解析の有用性について~分類問題を中心として~2017

    • Author(s)
      寺田吉壱
    • Organizer
      JST CREST AIP チャレンジシンポジウム『ビッグデータ利活用のための基盤構築とその応用』
    • Place of Presentation
      名古屋工業大学(愛知県,名古屋市)
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] Possibilities and limitations of machine learning on unweighted graphs -From the viewpoint of random geometric graph theory-2017

    • Author(s)
      Yoshikazu Terada, Ulrike von Luxburg
    • Organizer
      HeKKSaGOn Working Group, Seeds in Mathematics versus Needs outside Mathematics, Winter School in Osaka 2017
    • Place of Presentation
      大阪大学(大阪府,豊中市)
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] 関数データに対する半教師付き判別問題について2016

    • Author(s)
      寺田吉壱
    • Organizer
      2016年度統計関連学会連合大会
    • Place of Presentation
      金沢大学(石川県,金沢市)
    • Related Report
      2016 Research-status Report
  • [Presentation] なぜ normalized cut を用いないのか? Ncut の漸近的性質と Spectral Clustering との関係2016

    • Author(s)
      寺田吉壱,山本倫生
    • Organizer
      第19回情報論的学習理論ワークショップ (IBIS2016)
    • Place of Presentation
      京都大学(京都府,京都市)
    • Related Report
      2016 Research-status Report
  • [Presentation] 関数データに対する PU learning について2016

    • Author(s)
      寺田吉壱
    • Organizer
      平成28年度CREST研究集会『大規模統計モデリングと計算統計 III』
    • Place of Presentation
      東京大学(東京都,目黒区)
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] Weighted kernel k-means法の統計的性質 ~ Graph cutは空間の分割を導くのか? ~2016

    • Author(s)
      寺田吉壱
    • Organizer
      2016年度統計サマーセミナー
    • Place of Presentation
      サヤン・テラス ホテル&リゾート(千葉県,夷隅郡)
    • Related Report
      2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2022-02-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi