• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Moving object detection and classification using deep learning

Research Project

Project/Area Number 16K16083
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Perceptual information processing
Research InstitutionThe University of Tokyo

Principal Investigator

Kawakami Rei  東京大学, 大学院情報理工学系研究科, 特任講師 (90591305)

Project Period (FY) 2016-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2016: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Keywords動き / 学習 / 深層 / 鳥 / 風力発電 / 物体検出 / 分類 / 検出 / 動画 / 深層学習 / 追跡 / ニューラルネットワーク / LSTM / CNN / Long Short-term Memory
Outline of Final Research Achievements

In this project, we worked on the detection and classification of objects that are too small that they can only be recognized by their motion. With wide area surveillance of wild birds as a target application, we collected 4K resolution videos for sea eagles around the wind turbines and labeled bird trajectories and background parts for 768 GB videos. As a method of detection and classification, tracking using a correlation filter of deep feature and motion learning by convolutional LSTM leads to a method that identifies a bird by its motion patterns acquired by simultaneously tracking them. It achieved a performance improvement of 25.2% points from baselines that only use still-image features. The achievements appeared as several papers, and they will contribute to reduce the impact of wind turbines on the ecology of wild birds.

Report

(3 results)
  • 2017 Annual Research Report   Final Research Report ( PDF )
  • 2016 Research-status Report
  • Research Products

    (13 results)

All 2017 2016 Other

All Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 2 results,  Open Access: 2 results,  Acknowledgement Compliant: 1 results) Presentation (8 results) (of which Int'l Joint Research: 2 results,  Invited: 1 results) Remarks (3 results)

  • [Journal Article] Bird detection and species classification with time-lapse images around a wind farm: Dataset construction and evaluation2017

    • Author(s)
      Yoshihashi R.、Kawakami R.、Iida M.、Naemura T.
    • Journal Title

      Wind Energy

      Volume: 20 Issue: 12 Pages: 1983-1995

    • DOI

      10.1002/we.2135

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Combining deep features for object detection at various scales: Finding small birds in landscape images2016

    • Author(s)
      A. Takeki, T. Trinh, R. Yoshihashi, R. Kawakami, M. Iida, and T. Naemura
    • Journal Title

      IPSJ Transactions on Computer Vision and Application (CVA)

      Volume: 8 Issue: 1

    • DOI

      10.1186/s41074-016-0006-z

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research / Acknowledgement Compliant
  • [Presentation] 鳥プロジェクトの紹介―深層学習による動物体の検出と識別―2017

    • Author(s)
      川上玲
    • Organizer
      日本画像学会年次大会
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] 放牧支援のための空撮画像における CNN に基づく牛検出2017

    • Author(s)
      邵 文, 福田 誠一郎, 吉橋 亮太, 川上 玲, 尤 少迪, 川瀬 英路, 苗村 健
    • Organizer
      映像メディア処理シンポジウム(IMPS2017)
    • Related Report
      2017 Annual Research Report
  • [Presentation] 畜産業支援に向けたドローンによる空撮画像の撮影と牛検出への応用2017

    • Author(s)
      王晋,福田誠一郎,吉橋亮太,川上玲,川瀬英路,苗村健
    • Organizer
      画像センシングシンポジウム(SSII2017)
    • Related Report
      2017 Annual Research Report
  • [Presentation] Bird Detection near Wind Turbines from High-resolution Video using LSTM Networks2016

    • Author(s)
      Tu Tuan Trinh, Ryota Yoshihashi, Rei Kawakami , Makoto Iida, and Takeshi Naemura
    • Organizer
      World Wind Energy Conference and Exhibition
    • Place of Presentation
      東京大学(東京都・文京区)
    • Year and Date
      2016-10-31
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] Detection of small birds in large images by combining a deep detector with semantic segmentation2016

    • Author(s)
      Akito Takeki, Tu Tuan Trinh, Ryota Yoshihashi, Rei Kawakami, Makoto Iida, and Takeshi Naemura
    • Organizer
      IEEE International Conference on Image Processing
    • Place of Presentation
      Phoenix Convention Center, Arizona, USA
    • Year and Date
      2016-09-25
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] 鳥検出のための矩形領域を教師情報としたCNNによる領域分割2016

    • Author(s)
      福田誠一郎,吉橋亮太,川上玲,飯田誠,苗村健
    • Organizer
      映像情報メディア年次大会
    • Place of Presentation
      三重大学(三重県・津市)
    • Year and Date
      2016-08-31
    • Related Report
      2016 Research-status Report
  • [Presentation] 領域分割と検出器の組み合わせによる解像度に適応的な鳥画像検出 ― 遠景画像における小さな鳥の検出2016

    • Author(s)
      竹木章人,チントゥアントゥー,吉橋亮太,川上玲,飯田誠,苗村健
    • Organizer
      画像の認識・理解シンポジウム MIRU
    • Place of Presentation
      アクトシティ浜松(静岡県・浜松市)
    • Year and Date
      2016-08-01
    • Related Report
      2016 Research-status Report
  • [Presentation] 複雑な背景や変形を考慮したロバストな鳥の自動追跡2016

    • Author(s)
      チャンホアンバ,吉橋亮太,川上玲,飯田誠,苗村健
    • Organizer
      画像センシングシンポジウム SSII
    • Place of Presentation
      パシフィコ横浜(神奈川県・横浜市)
    • Year and Date
      2016-06-08
    • Related Report
      2016 Research-status Report
  • [Remarks] Rei Kawakami

    • URL

      http://www.nae-lab.org/~rei/research/research.html

    • Related Report
      2017 Annual Research Report
  • [Remarks] Image Dataset for Bird Detection

    • URL

      http://bird.nae-lab.org/dataset/

    • Related Report
      2017 Annual Research Report 2016 Research-status Report
  • [Remarks] Research

    • URL

      http://www.nae-lab.org/~rei/research/research.html

    • Related Report
      2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi