• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

3D shape reconstruction with a monocular camera by employing geometric primitives

Research Project

Project/Area Number 16K16084
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Perceptual information processing
Research InstitutionNational Institute of Advanced Industrial Science and Technology (2018)
Toyohashi University of Technology (2016-2017)

Principal Investigator

Oishi Shuji  国立研究開発法人産業技術総合研究所, 情報・人間工学領域, 研究員 (30759618)

Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2017: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Fiscal Year 2016: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords3次元復元 / Visual SLAM / Model fitting / モデルフィッティング / 一般化円筒分解 / 非剛体レジストレーション / 3次元形状復元 / 画像
Outline of Final Research Achievements

Accurate 3D shape measurement technology based on limited sensor information obtained from a specific viewpoint is important to grab a structure of the scene. In this research, we addressed dense 3D reconstruction using a monocular camera. Specifically, we developed a Pixel-wise depth estimation method and a new Visual SLAM that maintains an enormous amount of feature points to generate highly-detailed 3D models with a monocular camera. In addition, in order to achieve denser shape recovery, we developed a model fitting method where a reference model (a geometric primitive) is aligned toward a partial shape observation, which leads to continuous 3D model reconstruction from a discrete 3D point cloud.

Academic Significance and Societal Importance of the Research Achievements

移動ロボットのような実世界で稼働するシステムでは,正確な3次元環境計測が課題となる.人間と同様,移動ロボットも現在地点からの限定的な観測のみ利用可能であり,その断片的な情報の蓄積から高精度・高密度な形状情報を得ることで安全な経路計画や物体操作が実現できる.
本研究は,一般に用いられる単眼カメラを用いた3次元形状復元手法を開発するもので,特殊なセンサを必要としないため多様なシステムへ適用が可能である.

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (6 results)

All 2019 2018

All Presentation (6 results) (of which Int'l Joint Research: 1 results)

  • [Presentation] VITAMIN-E: VIsual Tracking And MappINg with Extremely Dense Feature Points2019

    • Author(s)
      Masashi Yokozuka, Shuji Oishi, Thompson Simon, Atsuhiko Banno
    • Organizer
      2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR2019)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 形状の不確かさを考慮した3次元モデルの一般化円筒分解2019

    • Author(s)
      大石 修士, 横塚 将志, Thompson Frank Simon, 阪野 貴彦
    • Organizer
      第24回ロボティクスシンポジア
    • Related Report
      2018 Annual Research Report
  • [Presentation] 単眼カメラによる密な特徴点追跡及び地図生成2019

    • Author(s)
      横塚 将志, 大石 修士, Thompson Frank Simon, 阪野 貴彦
    • Organizer
      第24回ロボティクスシンポジア
    • Related Report
      2018 Annual Research Report
  • [Presentation] LIDARを用いた3次元地図生成における未観測領域削減のための視点選択2018

    • Author(s)
      井内正誠,大石修士,三浦 純
    • Organizer
      2018年ロボティクス・メカトロニクス講演会
    • Related Report
      2017 Research-status Report
  • [Presentation] SeqSLAM++: 見えに基づく位置推定と屋外ナビゲーション2018

    • Author(s)
      大石修士,井上陽平,三浦純,田中翔大
    • Organizer
      第23回ロボティクスシンポジア
    • Related Report
      2017 Research-status Report
  • [Presentation] 反射強度付き3次元地図を用いた単眼カメラの自己位置推定2018

    • Author(s)
      川又康了,大石修士,三浦純
    • Organizer
      2018年ロボティクス・メカトロニクス講演会
    • Related Report
      2017 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi