• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Grammatical Error Correction using Robust Word Representation Learning and Deep Neural Networks

Research Project

Project/Area Number 16K16117
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Intelligent informatics
Research InstitutionTokyo Metropolitan University

Principal Investigator

Komachi Mamoru  首都大学東京, システムデザイン研究科, 准教授 (60581329)

Research Collaborator Kaneko Masahiro  
Zhang Longtu  
Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Keywords深層学習 / 単語分散表現 / 文法誤り訂正 / 深層言語表現 / 文法誤り検出 / 機械翻訳 / 誤り訂正 / 誤り検出 / 表現学習 / 分散表現 / LSTM / 第二言語習得 / マルチタスク学習 / 自然言語処理 / 機械学習 / ニューラネルットワーク
Outline of Final Research Achievements

This study proposed an approach to apply deep learning to grammatical error detection and correction. The sentences written by language learners differ from those written by native speakers in that they may make mistakes in the words themselves or in the context of which they are used. Taking these differences in context into account, we built a mathematical model for representing words and used deep learning to detect and correct grammatical errors. We also proposed a method for error detection using a contextualized language representation model learned from a large amount of text data written by native speakers, and achieved the state-of-the-art accuracy in English grammatical error detection.
On the other hand, for Japanese and Chinese, we proposed a model that reconstructs word sequence by decomposing kanji into radicals, and demonstrated its effectiveness in Japanese-Chinese neural machine translation.

Academic Significance and Societal Importance of the Research Achievements

本研究では英語学習者の文法誤り検出について、学習者の文章の誤り方を考慮して単語をモデル化することと、ネイティブが書いた大規模な文章データから獲得した文脈つきの言語表現モデルを用いることが、それぞれ有効であることを世界で初めて示し、いずれの研究においても当時の世界最高精度の精度を達成することができました。本研究は世界を代表する英語学習者の文法誤り検出の研究の一つです。

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (16 results)

All 2019 2018 2017 2016 Other

All Int'l Joint Research (2 results) Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (11 results) (of which Int'l Joint Research: 6 results) Remarks (2 results)

  • [Int'l Joint Research] University of Cambridge(英国)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] The University of Liverpool(英国)

    • Related Report
      2018 Annual Research Report
  • [Journal Article] 正誤情報と文法誤りパターンを考慮した単語分散表現を用いた文法誤り検出2018

    • Author(s)
      金子正弘, 堺澤勇也, 小町守
    • Journal Title

      自然言語処理

      Volume: 25 Issue: 4 Pages: 421-439

    • DOI

      10.5715/jnlp.25.421

    • NAID

      130007531011

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] Multi-Head Multi-Layer Attention to Deep Language Representations for Grammatical Error Detection2019

    • Author(s)
      Masahiro Kaneko and Mamoru Komachi
    • Organizer
      20th International Conference on Computational Linguistics and Intelligent Text Processing (CICLing)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 日本語学習者向けの文法誤り検出機能付き誤用例文検索システム2019

    • Author(s)
      新井美桜, 金子正弘, 小町守
    • Organizer
      言語処理学会第25回年次大会
    • Related Report
      2018 Annual Research Report
  • [Presentation] 擬似誤りコーパスを用いた天気予報原稿のニューラル誤り検出2019

    • Author(s)
      白井稔久, 萩行正嗣, 小町守.
    • Organizer
      2019年度人工知能学会全国大会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Neural Machine Translation of Logographic Language Using Sub-character Level Information2018

    • Author(s)
      Longtu Zhang and Mamoru Komachi
    • Organizer
      Third Conference on Machine Translation (WMT)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] TMU Japanese-Chinese Unsupervised NMT System for WAT 2018 Translation Task2018

    • Author(s)
      Longtu Zhang, Yuting Zhao, Mamoru Komachi
    • Organizer
      Third Workshop on Asian Translation
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] パイプライン処理によるニューラル英語文法誤り検出と訂正2018

    • Author(s)
      金子正弘, 小町守
    • Organizer
      言語処理学会第24回年次大会, pp.576-579.
    • Related Report
      2017 Research-status Report
  • [Presentation] TMU System for SLAM-20182018

    • Author(s)
      Masahiro Kaneko, Tomoyuki Kajiwara and Mamoru Komachi
    • Organizer
      13th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2018): Shared Task on Second Language Acquisition Modeling. New Orleans, USA.
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] 英語学習者の文法誤りパターンと正誤情報を考慮した単語分散表現学習2017

    • Author(s)
      金子正弘, 堺澤勇也, 小町守
    • Organizer
      言語処理学会第23回年次大会
    • Place of Presentation
      筑波大学(茨城県つくば市)
    • Year and Date
      2017-03-13
    • Related Report
      2016 Research-status Report
  • [Presentation] Grammatical Error Detection Using Error- and Grammaticality-Specific Word Embeddings2017

    • Author(s)
      Masahiro Kaneko, Yuya Sakaizawa, Mamoru Komachi
    • Organizer
      8th International Joint Conference on Natural Language Processing (IJCNLP 2017), pp.40-48. Taipei, Taiwan.
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] 日本語 Twitter 文書を対象とした系列ラベリングによる表記正規化2017

    • Author(s)
      大崎彩葉, 北川善彬, 小町守
    • Organizer
      情報処理学会 自然言語処理研究会, Vol.2017-NL-231, No.12, pp.1-6.
    • Related Report
      2017 Research-status Report
  • [Presentation] Extraction of English Spelling Errors using a Word Typing Game2016

    • Author(s)
      Ryuichi Tachibana and Mamoru Komachi
    • Organizer
      The 10th Edition of the Language Resources and Evaluation Conference (LREC)
    • Place of Presentation
      Portoroz (Slovenia)
    • Year and Date
      2016-05-23
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Remarks] 日本語学習者のための誤用検索システム

    • URL

      http://cl.sd.tmu.ac.jp/sakura/v3

    • Related Report
      2018 Annual Research Report
  • [Remarks] English Grammatical Error Detection

    • URL

      http://kanekomasahiro.sakura.ne.jp/revision_support/

    • Related Report
      2017 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi