A system for accelerating large-scale genome analysis
Project/Area Number |
16K16145
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Life / Health / Medical informatics
|
Research Institution | The University of Tokyo |
Principal Investigator |
Kasahara Masahiro 東京大学, 大学院新領域創成科学研究科, 准教授 (60376605)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2016: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | ワークフロー / 再現性 / コンテナ仮想化 / 並列計算 / パイプライン / ゲノム科学 / 並列分散計算 / ハイパフォーマンスコンピューティング / ゲノム解析 / ソフトウエア開発効率化・安定化 / ハイパフォーマンス・コンピューティング / アルゴリズム / ゲノム |
Outline of Final Research Achievements |
Traditional researches in parallel computing were often geared toward more efficient use of CPU or other units. On the other hand, we usually have to compute only once for findings in natural sciences. Therefore, the main bottleneck in parallel computing in genome analysis is the time for programming, not the time for computation. To this end, we developed (1) composable container system, (2) workflow description system that requires a minimal amount of learning and description of workflows, (3) a system for easily using commercial cloud computing or HPC clusters. Those tools are released under open-source licences.
|
Academic Significance and Societal Importance of the Research Achievements |
ゲノム研究など、数多くのグループ・企業が提供しているソフトウェアを組み合わせて大規模データを解析する発見科学の計算を「(速くではなく)早く」実行するシステムにより各種の研究や開発が大きく加速される。ゲノム研究だけではなく、自然言語処理や深層学習を含む機械学習分野でも類似の問題を抱えており、これらの分野でも研究・開発が加速される。
|
Report
(4 results)
Research Products
(8 results)