Project/Area Number |
16K16158
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Web informatics, Service informatics
|
Research Institution | Okayama University of Science (2017-2018) Oita National College of Technology (2016) |
Principal Investigator |
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | ウェブ工学 / ビッグデータ / ソーシャルメディア / 観光 / 地理情報システム(GIS) |
Outline of Final Research Achievements |
We worked on the improvement of heterogeneity multimedia big data and the analysis of multimedia big data. We proposed methods to estimate the gender of Twitter user from general feature value, to classify a user into resident and non-resident, analysis of user's behavior at sightseeing spot and so on. We have published these research results at domestic conferences, international conferences, international workshops, journals and so on.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究課題では,不均質なメタデータを含むマルチメディアビッグデータの分析について,幾つかの研究に取り組んだ.ユーザが生成するコンテンツとそれに付与されるメタデータは,メタデータ自体や,コンテンツとの関係が不均質であることが分析を困難にする場合がある.そのため,本研究では,そのようなマルチメディアビッグデータの不均質さを考慮しつつ,ユーザの興味や関心を分析,可視化する研究に取り組んだ.
|