• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Detecting emerging academic field by network algorithm.

Research Project

Project/Area Number 16K16167
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Library and information science/Humanistic social informatics
Research InstitutionThe University of Tokyo

Principal Investigator

ASATANI KIMITAKA  東京大学, 大学院工学系研究科(工学部), 特任研究員 (70770395)

Project Period (FY) 2016-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Keywords複雑ネットワーク / 書誌情報 / ネットワーク / 表現学習 / フォーサイト
Outline of Final Research Achievements

In this research, we developed the method that detect academic trend from citation network structure. It is important to grasp trend of an academic field for the making science foresight and planning strategy of R&D. In previous studies, several network features and information retrieval methods have been proposed to elucidate the structure of citation networks and to detect important nodes. However, it is difficult to retrieve information related to trends in an academic field and to detect cutting-edge areas from the citation network. We propose a novel framework that detects the trend as the growth direction of a citation network using network representation learning. On several datasets, we confirm the existence of trends by observing that an academic field grows in a specific direction linearly in latent space. Moreover, we confirm that the detected direction can be used for future citation prediction with higher accuracy compared to existing method.

Report

(3 results)
  • 2017 Annual Research Report   Final Research Report ( PDF )
  • 2016 Research-status Report
  • Research Products

    (8 results)

All 2018 2017 2016

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (7 results) (of which Int'l Joint Research: 3 results)

  • [Journal Article] ., Detecting trends in academic research from a citation network using network representation learning2018

    • Author(s)
      Asatani, K., Ochi, M., Mori, J., Sakata, I
    • Journal Title

      PLoS ONE

      Volume: TBD

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] Predicting future citation from the temporal information of citation network2017

    • Author(s)
      Kimitaka Asatani, Masanao Ochi, Junichiro Mori, Ichiro Sakata
    • Organizer
      Second International Workshop on SCIentific DOCument Analysis associated with JSAI International Symposia on AI 2017,
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 引用ネットワーク成長の予測と可視化2017

    • Author(s)
      浅谷公威,大知正直,森純一郎,坂田一郎
    • Organizer
      社会システムと情報技術研究ウィーク2017(WSSIT),
    • Related Report
      2017 Annual Research Report
  • [Presentation] ネットワーク分析による流行現象の理解2017

    • Author(s)
      浅谷公威、森純一郎、坂田一郎
    • Organizer
      第 14 回 ネットワーク生態学シンポジウム
    • Related Report
      2017 Annual Research Report
  • [Presentation] ネットワークからの時系列情報の抽出と可視化2017

    • Author(s)
      浅谷公威, 大知正直, 森純一郎, & 坂田一郎
    • Organizer
      人工知能学会全国大会
    • Related Report
      2017 Annual Research Report
  • [Presentation] 業績推定とのマルチタスク学習による決算短信からの重要文抽出2017

    • Author(s)
      磯沼 大, 藤野 暢, 浮田純平, 村上 遥, 浅谷公威, 森 純一郎, 坂田一郎
    • Organizer
      第10回テキストマイニング・シンポジウム
    • Related Report
      2017 Annual Research Report
  • [Presentation] Detecting Research Trend of Academic Field in Latent Space2016

    • Author(s)
      Kimitaka Asatani, Masanao Ochi, Junichiro Mori, Ichiro Sakata
    • Organizer
      First International Workshop on SCIentific DOCument Analysis (SCIDOCA 2016)
    • Place of Presentation
      Keio University, Tokyo
    • Year and Date
      2016-11-15
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] Representation learning for geospatial areas using large-scale mobility data from smart cards2016

    • Author(s)
      Masanao Ochi, Yuko Nakashio, Yuta Yamashita, Ichiro Sakata
    • Organizer
      the 5th International Workshop on Pervasive Urban Applications in conjunction with ACM UbiComp 2016(PURBA2016)
    • Place of Presentation
      Heiderberg, Germany
    • Year and Date
      2016-09-12
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2016-04-21   Modified: 2019-12-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi