• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Representation theory of quantum deformed current algebras

Research Project

Project/Area Number 16K17565
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Algebra
Research InstitutionShinshu University

Principal Investigator

Wada Kentaro  信州大学, 学術研究院理学系, 准教授 (60583862)

Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords表現論 / 量子群 / リー代数 / q-Schur 代数 / Hecke 代数 / 量子群の表現論 / リー代数の表現論 / テンソル圏 / ホップ代数 / 組合せ論 / Lie 代数の表現論 / 対称群の表現論 / Schur-Weyl 双対 / Lie代数の表現論 / リー環 / ヘッケ環 / 組み合わせ論
Outline of Final Research Achievements

We studied on some structures and representations of quantum deformed current algebras.
We obtained the following results on structures of quantum deformed current algebras. The quantum current algebra is a Hopf subalgebra of a quantum loop algebra, and the quantum deformed current algebra is a coideal subalgebra of the quantum current algebra. These imply that the module category of the quantum deformed current algebra is a module category over the module category of the quantum current algebra which is a tensor category. We also found that the quantum deformed current algebra is a subalgebra of a shifted quantum affine algebra introduced by Finkelberg-Tsymbaliuk.
We also classify the isomorphism classes of finite dimensional simple modules of quantum deformed current algebras.

Academic Significance and Societal Importance of the Research Achievements

量子変形カレント代数は, 巡回 q-Schur 代数の表現論を動機として, 研究代表者によって導入された代数であるが, 今回の研究によって, その "量子群" としての構造が明らかになったことによって, 巡回 q-Schur 代数の表現論や関連する表現論も含め, 今後多くの応用が期待できる。また, 数理物理に現れるクーロン枝の数学的な定式化に関連して導入された, シフト量子アフィン代数との関係も発見できたことは重要な成果である。

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (7 results)

All 2019 2018 2017 2016

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (5 results) (of which Int'l Joint Research: 2 results,  Invited: 1 results)

  • [Journal Article] Finite dimensional simple modules of deformed current Lie algebras2018

    • Author(s)
      Wada Kentaro
    • Journal Title

      Journal of Algebra

      Volume: 501 Pages: 1-43

    • DOI

      10.1016/j.jalgebra.2018.01.006

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] New Realization of Cyclotomic q-Schur Algebras2016

    • Author(s)
      K. Wada
    • Journal Title

      Publ. RIMS Kyoto Univ

      Volume: 52 Issue: 4 Pages: 497-555

    • DOI

      10.4171/prims/188

    • Related Report
      2016 Research-status Report
    • Peer Reviewed
  • [Presentation] Finite dimensional simple modules of (q, Q)-current algebras2019

    • Author(s)
      和田堅太郎
    • Organizer
      Algebraic Lie Theory and Representation Theory
    • Related Report
      2019 Annual Research Report
  • [Presentation] (q,Q)-カレント代数の有限次元既約表現2018

    • Author(s)
      和田堅太郎
    • Organizer
      組合せ論的表現論の諸相 (RIMS共同研究)
    • Related Report
      2018 Research-status Report
  • [Presentation] Mackey’s formulas for cyclotomic Hecke algebras and the category O of rational Cherednik algebras of type G(r, 1, n)2017

    • Author(s)
      Kentaro Wada
    • Organizer
      Conference on Algebraic Representation Theory
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Finite dimensional simple modules of deformed current Lie algebras2016

    • Author(s)
      Kentaro Wada
    • Organizer
      Conference on Algebraic Representation Theory
    • Place of Presentation
      Harbin Institute of Technology, Shenzhen Graduate School (中国)
    • Year and Date
      2016-12-05
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] Finite dimensional simple modules of deformed current Lie algebras2016

    • Author(s)
      和田堅太郎
    • Organizer
      第2回Algebraic Lie Theory and Representation Theory
    • Place of Presentation
      菅平高原 プチ・ホテル ゾンタック(長野県)
    • Year and Date
      2016-06-12
    • Related Report
      2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi