• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of a categorification of period integrals and Frobenius structures on the spaces of stability conditions

Research Project

Project/Area Number 16K17588
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Geometry
Research InstitutionJosai University (2020-2021)
Osaka University (2019)
The University of Tokyo (2016-2018)

Principal Investigator

IKEDA Akishi  城西大学, 理学部, 准教授 (40755162)

Project Period (FY) 2016-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2016: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Keywords安定性条件の空間 / Calabi-Yau代数 / Frobenius多様体 / ミラー対称性 / 三角圏の安定性条件 / 周期写像 / リーマン面上の二次微分 / gentle代数 / ルート系 / Hurwitz空間 / 三角圏 / Bridgeland安定性条件 / カラビ-ヤウ代数 / 二次微分 / 導来圏 / フロベニウス多様体 / カラビ・ヤウ代数 / ブリッジランド安定性条件 / 周期積分 / 圏論的エントロピー / カラビ・ヤウ圏 / 安定性条件
Outline of Final Research Achievements

The space of stability conditions, introduced by Bridgeland, is the space of parameters (called the central charges) which characterize the stability conditions of D-branes in string theory. On the other hand, the period integral measures lengths and angles of holes in a geometric object. In this research, we investigate the correspondence between central charges and period integrals when the geometric objects are surfaces. We also found how to extend this correspondence if we consider higher dimensional geometric objects obtained by suspending surfaces.

Academic Significance and Societal Importance of the Research Achievements

本研究の主題であるD-ブレーンの安定性条件を決定するパラメーター(中心電荷)と周期積分は、安定性条件が発見された約20年前から研究者の間で何かしらの対応関係があることが期待されていたものの、明確に対応関係が定式化され、証明されることは近年までなかった。本研究では、この対応関係を明確化し、曲面に関連する場合は先行研究を含む形で統一的に説明する枠組みを作ることができた。この結果、超弦理論に現れる数理構造の解明に貢献をすることが出来たと言える。

Report

(7 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (19 results)

All 2022 2021 2020 2019 2018 2017 2016 Other

All Int'l Joint Research (3 results) Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (15 results) (of which Int'l Joint Research: 9 results,  Invited: 14 results)

  • [Int'l Joint Research] 清華大学, Yau Mathematical Sciences Center(中国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] 清華大学, Yau Mathematical Sciences Center(中国)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] 香港中文大学(中国)

    • Related Report
      2016 Research-status Report
  • [Journal Article] A Frobenius manifold for l-Kronecker quiver2022

    • Author(s)
      Ikeda Akishi、Otani Takumi、Shiraishi Yuuki、Takahashi Atsushi
    • Journal Title

      Letters in Mathematical Physics

      Volume: 112 Issue: 1

    • DOI

      10.1007/s11005-022-01506-5

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Presentation] Calabi-Yau algebras and canonical bundles2022

    • Author(s)
      Akishi Ikeda
    • Organizer
      Preprojective algebras and Calabi-Yau algebras Online School
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Arcs on surfaces vs modules over algebras2021

    • Author(s)
      Akishi Ikeda
    • Organizer
      Infinite Analysis 21 Workshop Around Cluster Algebras
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Gentle代数の2重次数付きCalabi-Yau完備化と曲面の幾何学2020

    • Author(s)
      池田曉志
    • Organizer
      東京名古屋代数セミナー
    • Related Report
      2020 Research-status Report
  • [Presentation] q-stability conditions on CY- X categories2019

    • Author(s)
      池田曉志
    • Organizer
      Stability conditions, Frobenius manifold and Mirror symmetry
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] quadratic differentials and q-stability conditions on CY- X categories2019

    • Author(s)
      池田曉志
    • Organizer
      Workshop on quadratic differentials and q-stability conditions
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Bigraded Calabi-Yau completions of topological Fukaya categories and q-stability conditions2019

    • Author(s)
      池田曉志
    • Organizer
      Interaction Between Algebraic Geometry and QFT
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On classification of simply-laced generalized root systems of type A via marked bordered surfaces2019

    • Author(s)
      池田曉志
    • Organizer
      Mirror Symmetry and Related Topics, 2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] $q$-stability conditions and C^*-equivariant quantum cohomology for the local P^12019

    • Author(s)
      池田曉志
    • Organizer
      Enhancing representation theory, noncommutative algebra and geometry
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] q-安定性条件の空間とq-二次微分の空間について2018

    • Author(s)
      池田曉志
    • Organizer
      ミラー対称性の諸相 2018
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] q-stability conditions and C^*-equivariant coherent sheaves on canonical bundles2018

    • Author(s)
      池田曉志
    • Organizer
      城崎代数幾何学シンポジウム2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] q-stability conditions and q-quadratic differentials2018

    • Author(s)
      池田曉志
    • Organizer
      Mirror Symmetry for Fano Manifolds and Related Topics
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Spaces of stability conditions on the Calabi-Yau categories associated with quivers2017

    • Author(s)
      池田曉志
    • Organizer
      Geometry, Representation Theory, and Mathematical Physics
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 安定性条件の空間, 超平面配置, 周期2017

    • Author(s)
      池田曉志
    • Organizer
      研究集会「不変式・超平面配置と平坦構造」
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] ADE型箙の安定性条件の空間とCoxeter KZ接続について2017

    • Author(s)
      池田曉志
    • Organizer
      複素領域における関数方程式とその周辺
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Frobenius structures on Hurwitz spaces and confluent KZ equations2016

    • Author(s)
      池田曉志
    • Organizer
      Categorical and analytic invariants in Algebraic geometry 3
    • Place of Presentation
      Higher School of Economics, Moscow, Russia
    • Year and Date
      2016-09-12
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2016-04-21   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi