Project/Area Number |
16K17596
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Geometry
|
Research Institution | Kagoshima University |
Principal Investigator |
Ishida Hiroaki 鹿児島大学, 理工学域理学系, 助教 (00722422)
|
Project Period (FY) |
2016-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 複素多様体 / トーラス作用 / 葉層構造 / トーリック多様体 / 幾何学 |
Outline of Final Research Achievements |
The notion of canonical foliation on a compact complex manifold is introduced. It is shown that a compact complex manifold admitting a maximal torus action behaves similarly to nonsingular complete toric variety with respect to the canonical foliation. Such foliated manifolds can be described by the corresponding marked fans which generalize the notion of rational fans.
|
Academic Significance and Societal Importance of the Research Achievements |
各トーリック多様体は「トーリック幾何の基本定理」によって有理扇と呼ばれる組み合わせ論の対象と一対一に対応し, このことから代数幾何学の問題を組合せ論の問題に帰着, あるいは逆に組合せ論の問題を代数幾何の手法を用いて解決することがなされた. トーリック多様体は有理扇と対応し, また射影的トーリック多様体は格子凸多面体と対応する. 一方で, 有理でない扇や格子的でない凸多面体は数多くあり, 「トーリック幾何の基本定理を, 有理でない扇や凸多面体に対しても意味があるように拡張できるか」が問われている. 本研究の成果として, ある種の葉層構造を通じて, この問いに一定の回答を与えた.
|