• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on non-commutative toric geometry

Research Project

Project/Area Number 16K17596
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Geometry
Research InstitutionKagoshima University

Principal Investigator

Ishida Hiroaki  鹿児島大学, 理工学域理学系, 助教 (00722422)

Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords複素多様体 / トーラス作用 / 葉層構造 / トーリック多様体 / 幾何学
Outline of Final Research Achievements

The notion of canonical foliation on a compact complex manifold is introduced. It is shown that a compact complex manifold admitting a maximal torus action behaves similarly to nonsingular complete toric variety with respect to the canonical foliation. Such foliated manifolds can be described by the corresponding marked fans which generalize the notion of rational fans.

Academic Significance and Societal Importance of the Research Achievements

各トーリック多様体は「トーリック幾何の基本定理」によって有理扇と呼ばれる組み合わせ論の対象と一対一に対応し, このことから代数幾何学の問題を組合せ論の問題に帰着, あるいは逆に組合せ論の問題を代数幾何の手法を用いて解決することがなされた.
トーリック多様体は有理扇と対応し, また射影的トーリック多様体は格子凸多面体と対応する. 一方で, 有理でない扇や格子的でない凸多面体は数多くあり, 「トーリック幾何の基本定理を, 有理でない扇や凸多面体に対しても意味があるように拡張できるか」が問われている.
本研究の成果として, ある種の葉層構造を通じて, この問いに一定の回答を与えた.

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (8 results)

All 2019 2017 2016

All Journal Article (3 results) (of which Peer Reviewed: 3 results) Presentation (5 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results)

  • [Journal Article] Transverse Kahler structures on central foliations of complex manifolds2019

    • Author(s)
      Hiroaki Ishida Hisashi Kasuya
    • Journal Title

      Annali di Matematica Pura ed Applicata

      Volume: 198 Issue: 1 Pages: 61-81

    • DOI

      10.1007/s10231-018-0762-8

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Torus invariant transverse Kaehler foliations2017

    • Author(s)
      Hiroaki Ishida
    • Journal Title

      Transaction of the American Mathematical Society

      Volume: 369 Issue: 7 Pages: 5137-5155

    • DOI

      10.1090/tran/7070

    • Related Report
      2016 Research-status Report
    • Peer Reviewed
  • [Journal Article] Complex manifolds with maximal torus actions2016

    • Author(s)
      Hiroaki Ishida
    • Journal Title

      Journal fur die reine und angewandte Mathematik

      Volume: 印刷中 Issue: 751 Pages: 121-184

    • DOI

      10.1515/crelle-2016-0023

    • Related Report
      2016 Research-status Report
    • Peer Reviewed
  • [Presentation] Quotients of toric varieties2019

    • Author(s)
      Hiroaki Ishida
    • Organizer
      Toric Topology 2019 in Okayama
    • Related Report
      2019 Annual Research Report
  • [Presentation] 極大トーラス作用付きの複素多様体とその葉層構造2019

    • Author(s)
      石田裕昭
    • Organizer
      日本数学会2019年度年会 幾何学分科会
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Transverse Kaehler structures on central foliations2017

    • Author(s)
      Hiroaki Ishida
    • Organizer
      変換群を核とする代数的位相幾何学
    • Related Report
      2017 Research-status Report
  • [Presentation] De Rham and Dolbeault Models of Moment-Angle Manifolds2017

    • Author(s)
      Hiroaki Ishida
    • Organizer
      The Princeton-Rider Workshop on the Homotopy Theory of Polyhedral Products
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Topology of central foliations2016

    • Author(s)
      石田裕昭
    • Organizer
      群作用と位相
    • Place of Presentation
      城崎健康福祉センター(兵庫県・豊岡市)
    • Year and Date
      2016-12-04
    • Related Report
      2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi