• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Fluctuation spreading from random environments to random walks

Research Project

Project/Area Number 16K17620
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Basic analysis
Research InstitutionNihon University

Principal Investigator

KUBOTA Naoki  日本大学, 理工学部, 助教 (20754972)

Project Period (FY) 2016-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords不規則媒質中の乱歩 / ファーストパッセージパーコレーション / フロッグモデル / 大偏差原理 / レート関数 / 連続性 / ランダムポテンシャル中の乱歩 / 確率論
Outline of Final Research Achievements

Media that exist in the natural world often have complex and random structure, and “random walks in random environments” are one of the mathematical models describing particles moving in such media. In this research, we treated the above model and studied how the randomness for the structure of the media affects the behavior of the random walk. As a result, we obtained that the diffusivities for two different media are very close if their strengths of randomness are very similar (for instance, the ease of forming cavities in a sponge). To obtain this result, we investigated several related models and got new properties for the behaviors of those models.

Academic Significance and Societal Importance of the Research Achievements

不規則な構造を持つ媒質中における粒子の挙動は,数学的・物理的に未解明な部分が多い.特に,粒子の拡散度合を特徴付ける性質についてはほとんど何もわかっていない.この未知の領域に対して,「不規則性の状態が近い媒質においては粒子の拡散度合も近くなる」という連続性の問題を本研究では解決することに成功した.また,不規則媒質中の乱歩の挙動は感染症の拡大やインターネット上の情報拡散にも深く関連していることから,これらの現実的な拡散現象の問題にも,本研究結果や解析手法の応用が期待できる.さらに,様々な数理モデルを関連付け研究を行ったため,本研究は実社会における幅広い拡散現象の解析にも役立つと思われる.

Report

(6 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (25 results)

All 2020 2019 2018 2017 2016 Other

All Int'l Joint Research (1 results) Journal Article (4 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 4 results,  Open Access: 1 results) Presentation (15 results) (of which Int'l Joint Research: 7 results,  Invited: 11 results) Remarks (5 results)

  • [Int'l Joint Research] Stanford University(米国)

    • Related Report
      2018 Research-status Report
  • [Journal Article] Gaussian fluctuation for superdiffusive elephant random walks2019

    • Author(s)
      Naoki Kubota, Masato Takei
    • Journal Title

      Journal of Statistical Physics

      Volume: 177 Issue: 6 Pages: 1157-1171

    • DOI

      10.1007/s10955-019-02414-0

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Continuity for the Rate Function of the Simple Random Walk on Supercritical Percolation Clusters2019

    • Author(s)
      Naoki Kubota
    • Journal Title

      Journal of Theoretical Probability

      Volume: - Issue: 4 Pages: 1948-1973

    • DOI

      10.1007/s10959-019-00936-7

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Deviation bounds for the first passage time in the frog model2019

    • Author(s)
      Naoki Kubota
    • Journal Title

      Advances in Applied Probability

      Volume: 51

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Slowdown estimates for one-dimensional random walks in random environment with holding times2018

    • Author(s)
      Amir Dembo、Ryoki Fukushima、Naoki Kubota
    • Journal Title

      Electronic Communications in Probability

      Volume: 23 Issue: none Pages: 1-12

    • DOI

      10.1214/18-ecp191

    • NAID

      120006644043

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] フロッグモデルにおける粒子の拡散について2020

    • Author(s)
      久保田直樹
    • Organizer
      霧島確率論セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Continuity of the rate function for the simple random walk on percolation clusters2019

    • Author(s)
      Naoki Kubota
    • Organizer
      Japan Netherlands workshop "Probabilistic methods in statistical mechanics of random media"
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Continuity for the asymptotic shape in the frog model with random initial configurations2019

    • Author(s)
      久保田直樹
    • Organizer
      日本数学会2019年度秋季総合分科会
    • Related Report
      2019 Research-status Report
  • [Presentation] Continuity for the asymptotic shape in the frog model with random initial configurations2019

    • Author(s)
      Naoki Kubota
    • Organizer
      Rigorous Statistical Mechanics and Related Topics
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] フロッグモデルにおける漸近形状の連続性について2019

    • Author(s)
      久保田直樹
    • Organizer
      大阪大学確率論セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Continuity for the rate function of the simple random walk on supercritical percolation clusters2019

    • Author(s)
      久保田直樹
    • Organizer
      無限粒子系、確率場の諸問題XIV
    • Related Report
      2018 Research-status Report
  • [Presentation] Continuity result for the rate function of the simple random walk on supercritical percolation clusters2019

    • Author(s)
      久保田直樹
    • Organizer
      福岡大学確率論セミナー
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Continuity result for the rate function of the simple random walk on supercritical percolation clusters2018

    • Author(s)
      Naoki Kubota
    • Organizer
      17th International symposium "Stochastic Analysis on Large Scale Interacting Systems"
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Upper tail estimates for the first passage time in the frog model2017

    • Author(s)
      久保田直樹
    • Organizer
      無限粒子系、確率場の諸問題XII
    • Place of Presentation
      奈良女子大学(奈良県奈良市)
    • Year and Date
      2017-01-22
    • Related Report
      2016 Research-status Report
  • [Presentation] Continuity results for the frog model in random initial configurations2017

    • Author(s)
      Naoki Kubota
    • Organizer
      One-day Workshop on Asymptotic and Potential Analysis of Stochastic Processes
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Upper tail estimates for the first passage time in the frog model2017

    • Author(s)
      Naoki Kubota
    • Organizer
      Japanese-German Open Conference on Stochastic Analysis 2017
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Tail estimates for the first passage time in the frog model2017

    • Author(s)
      Naoki Kubota
    • Organizer
      16th International symposium "Stochastic Analysis on Large Scale Interacting Systems"
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] フロッグモデルにおける情報伝達速度の末尾評価2016

    • Author(s)
      久保田直樹
    • Organizer
      平成28年度(第60回)日本大学理工学部学術講演会
    • Place of Presentation
      日本大学理工学部(東京都千代田区)
    • Year and Date
      2016-12-03
    • Related Report
      2016 Research-status Report
  • [Presentation] 不規則媒質中の乱歩に対する大偏差原理とリアプノフ指数2016

    • Author(s)
      久保田直樹
    • Organizer
      日本数学会2016年度秋季総合分科会(統計数学分科会特別講演)
    • Place of Presentation
      関西大学(大阪府吹田市)
    • Year and Date
      2016-09-15
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] Concentration inequalities for the simple random walk in unbounded nonnegative potentials2016

    • Author(s)
      Naoki Kubota
    • Organizer
      Workshop on percolation, spin glasses and random media
    • Place of Presentation
      イリノイ州エバンストン(アメリカ合衆国)
    • Year and Date
      2016-05-29
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Remarks] Naoki KUBOTA's website

    • URL

      https://sites.google.com/view/kubota-naoki08/home?authuser=0

    • Related Report
      2020 Annual Research Report
  • [Remarks] Naoki KUBOTA's website

    • URL

      https://sites.google.com/view/kubota-naoki08/home

    • Related Report
      2018 Research-status Report
  • [Remarks] Naoki KUBOTA's website

    • URL

      https://sites.google.com/a/nihon-u.ac.jp/naokubota/home

    • Related Report
      2017 Research-status Report
  • [Remarks] 日本大学研究者情報

    • URL

      http://kenkyu-web.cin.nihon-u.ac.jp/Profiles/119/0011833/profile.html

    • Related Report
      2017 Research-status Report 2016 Research-status Report
  • [Remarks] Naoki KUBOTA's website

    • URL

      https://sites.google.com/a/nihon-u.ac.jp/naokubota/

    • Related Report
      2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi