Merging nonequilibrium statistical mechanics and nonlinear dynamics: energetics of synchronization
Project/Area Number |
16K17765
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Mathematical physics/Fundamental condensed matter physics
|
Research Institution | Nagoya University |
Principal Investigator |
Izumida Yuki 名古屋大学, 情報学研究科, 助教 (70648815)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2016: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 非線形動力学 / 非平衡熱統計力学 / 同期現象 / 分岐現象 / エネルギー論 / 結合振動子 / カルノーサイクル / 低温度差スターリングエンジン / 非平衡熱力学 / 熱機関 / 効率・仕事率 |
Outline of Final Research Achievements |
Dynamics of self-sustained oscillators and periodically driven systems found in natural and artificial systems are described by nonlinear dynamics. These systems can also be regarded as nonequilibrium dissipative systems accompanied by energy inflow and dissipation. In this study, we modeled phenomena that can be appropriately described by merging ideas from nonlinear dynamics and nonequilibrium statistical mechanics and constructed energetics of these systems. Specifically, we have obtained achievements such as derivation of formula that connects synchronization and energy dissipation rate of coupled oscillators on circular trajectories and its application to coupled Stokes spheres, construction of nonequilibrium statistical mechanics and thermodynamic efficiency of a local equilibrium Carnot cycle, and construction of a dynamical model of a low-temperature-differential Stirling engine and elucidation of its rotational mechanism by a bifurcation analysis.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究成果の学術的意義として、非線形動力学と非平衡熱統計力学の両者によって本質が記述される系の新しい性質を解明できた点が挙げられる。例えば、同期とエネルギー散逸率の関係について得られた知見は、様々な機能を担う微小生物の鞭毛の流体力学的同期現象に適用でき、同期の生命現象における役割の理解につながると期待される。また低温度差スターリングエンジンは持続可能社会において注目される熱エネルギー技術である。その回転メカニズムの解明は、工学的な重要性をもち、社会的意義も大きいと考えられる。
|
Report
(4 results)
Research Products
(15 results)