Establishment of large deformation analysis techniques for nearly incompressible materials with complex shapes using smoothed finite element methods
Project/Area Number |
16K17978
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Materials/Mechanics of materials
|
Research Institution | Tokyo Institute of Technology |
Principal Investigator |
Onishi Yuki 東京工業大学, 工学院, 助教 (20543747)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2016: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
|
Keywords | 平滑化有限要素法 / 微圧縮性材料 / 大変形解析 / 四面体要素 / ロッキング / 圧力振動 / ロッキングフリー / 圧力チェッカーボーディングフリー / 節点反力振動フリー / 有限要素法 / 圧力振動フリー / 機械材料・材料力学 / 連続体力学 |
Outline of Final Research Achievements |
Nearly incompressible materials such as rubber, biomaterials and molding resins are often used in environments with large deformation. Finite element method (FEM) is generally used for computer simulation of material deformation, whereas large deformation analysis of incompressible materials is known to be difficult. It is still challenging to ensure accuracy and stability in such kind of analysis especially when the target has a complex shape. In this research, we worked on the development of a method to solve incompressible large deformation problems with high accuracy and stability by using a new kind of FEM formulation called S-FEM. Although it could not be resolved completely in this research period, we succeeded in finding an S-FEM formulation with excellent stability in the same calculation time in comparison to the conventional method.
|
Academic Significance and Societal Importance of the Research Achievements |
有限要素法(FEM)の定式化は数学的に整合性のとれた物が必ずしも良い解を与える訳ではなく,偶然生まれた不整合な要素が何故か良い解を与えるという事例が数多くある不思議な研究分野である.本研究で得られた知見は一見偶然良い解を与えるS-FEM定式化が何故良いのかというメカニズム解明の一助となる学術的意義を持つ.また,本研究が対象とした微圧縮性材料はタイヤ・生体・成形樹脂などの幅広い応用があり,産業界からの技術確立のニーズが高い事案である.研究家成果が実用化されれば充分な社会的意義が見込まれる.
|
Report
(4 results)
Research Products
(29 results)