Project/Area Number |
16K18022
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Thermal engineering
|
Research Institution | Kanazawa Institute of Technology (2018-2019) Iwate University (2016-2017) |
Principal Investigator |
Fukue Takashi 金沢工業大学, 工学部, 講師 (80647058)
|
Project Period (FY) |
2016-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
|
Keywords | 脈動流 / バイオミメティクス / 電子機器の冷却 / 強制対流熱伝達 / 伝熱促進 / 伝熱効率 / 直接冷却 / 熱交換器 / 流れのはく離 / 省エネルギー / 強制空冷 / 強制水冷 / 高密度実装 / ファン空冷 / 物体周りの伝熱 / 数値シミュレーション / 脈動波形 / 電子機器冷却 / 水冷デバイス / 熱設計 / スケール効果 / 伝熱機器 |
Outline of Final Research Achievements |
The objective of this study is to develop a novel cooling technology with high efficiency that can be applied regardless of dimensions of cooling devices. We focused on an application of a pulsating flow that exists in flow systems in our body, deviating from an existing concept for conventional flow control method for cooling devices. Firstly, the heat transfer enhancement around centimeter scale heating components by the pulsating flow was clarified. Secondly, the scale effect of the heat transfer enhancement by the pulsating flow was investigated while changing working fluids and the dimensions of the flow passages. Finally, an effectiveness of the pulsating flow in a miniaturized flow passage that simulates the direct hot spot cooling was evaluated. Through this study, a possibility of a development of a novel cooling methodology based on the application of the pulsating flow is clarified regardless of the working fluids and the dimensions of the cooling systems.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の実施により,流れに周期的な脈動を加えることによって,一連の伝熱促進と省エネルギの熱交換が,対象とする熱流体機器の寸法や作動流体を問わず得られる感触を得ることができた.この成果は,単にホットスポットをもつ超高密度実装の電子機器に向けた冷却技術への応用に留まらず,同様に小型化や省エネルギ化が求められる自動車関連機器やエネルギ機器への展開も期待できる.従来の「定常な流れによる冷却」という既成概念を覆した,脈動を前提とした冷却システムや熱交換システムは,持続可能な社会の構築の推進にも寄与が期待でき,熱流体設計の思想を十分に変えるインパクトを得られる可能性を得た.
|