Turbulent combustion modelling based on characteristic scales and bridge function
Project/Area Number |
16K18026
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Thermal engineering
|
Research Institution | Tokyo Institute of Technology |
Principal Investigator |
Minamoto Yuki 東京工業大学, 工学院, 助教 (70769687)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2016: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | 乱流燃焼 / 直接数値計算 / 乱流燃焼モデル / モデル開発 / 予混合燃焼 / 複合燃焼条件 / MILD燃焼 / トポロジー / ブリッジ関数 / 火炎干渉 / 燃焼 |
Outline of Final Research Achievements |
Next generation combustion devices are expected to utilize lean and diluted combustion conditions where characteristic time scale of chemical reactions becomes larger and closer to the turbulence time scale. Also, because of high level of turbulence-flame interaction, there could be many localized, unusual events such as ignition and flame-flame interaction, as well as conventional flame propagation. In such a turbulent combustion field, various regimes and modes of turbulent combustion could exist, and single popular turbulent combustion model may no longer predict such combustion accurately. In the present study, a relatively low-cost turbulent combustion model is developed to consider these mentioned combustion phenomena, based on characteristic chemical and turbulence scales and a bridge function which smoothly connects these modes.
|
Academic Significance and Societal Importance of the Research Achievements |
各種燃焼器の高効率化と低環境負荷化は,地球環境保全及びそのために課せられる厳しい環境規制遵守のための最優先事項である.数少ない低環境負荷燃焼技術として,代替燃料を用いた希薄予混合燃焼や希釈・予熱した混合気を用いる燃焼技術がある.これらの燃焼条件に適した燃焼機器を低コスト・短期間で開発するには,燃焼流の数値予測技術の確立が必要不可欠である.産業スケールの実用燃焼器の数値解析では,種々の数学モデルを用いて基礎方程式を閉じる必要があるが,数値解析精度に最も大きな影響を与える非線形性の強いモデルが,乱流燃焼モデルである.本研究では,次世代低環境負荷燃焼場に適用可能な乱流燃焼モデルを開発した.
|
Report
(4 results)
Research Products
(7 results)