Project/Area Number |
16K18250
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Composite materials/Surface and interface engineering
|
Research Institution | Shinshu University (2018) Tokyo University of Science (2016-2017) |
Principal Investigator |
Murai Kazuki 信州大学, 繊維学部, 助教(特定雇用) (30756268)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
|
Keywords | ペプチドハイドロゲル / ミネラリゼーション / 炭酸カルシウム / 有機無機複合材料 / 自己組織化 / 有機ー無機複合材料 / 機能性ペプチド |
Outline of Final Research Achievements |
Biomineralization is fabrication process for biominerals having hierarchically organized structures at nanoscale under a mild condition. In this study, we investigated the mechanisms of nucleation and selective crystal growth of the calcium carbonate mineralized in the peptide hydrogel having self-supplied ability utilizing enzyme-like hydrolysis activity on urea. Hydrolysis reaction rate on urea of the peptide was decreased with the increase of the elastic modulus of the peptide gel. In a system with a low degree of cross-linking between the peptide networks, the mineralized calcium carbonate has nanofiber-like morphology, which was similar to the peptide network. Moreover, morphology of the mineralized calcium carbonate changed to a combination of nanofibers and sheet-like structure by increase of degree of cross-linking. These results suggest that the nanostructure of the mineralized calcium carbonate is greatly influenced by the mechanical properties of the peptide gel.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究はペプチドの自己組織化を利用した3次元反応場およびミネラル源の自己供給能を付与したテンプレート上で炭酸カルシウムのミネラリゼーションを行い、無機物質の核形成および選択的結晶成長機構について検討した。このバイオミネラリゼーションの基礎的知見は、生物が一般的に行なっているバイオミネラルの構築機構の基礎原理を明らかとするのみならず、生物に倣う環境調和型製造プロセスによる機能性材料創製のためにも重要な知見である。
|