Precise Control of Multimetallic Nanoparticles and Design of Supported Uniform-Dispersed Nanoparticle Catalysts
Project/Area Number |
16K18290
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Catalyst/Resource chemical process
|
Research Institution | Kobe University |
Principal Investigator |
Taniya Keita 神戸大学, 先端融合研究環, 助教 (30632822)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | スズ-白金二元系触媒 / ナノ粒子 / 水素化 / カルボン酸 / 白金-スズ2元系ナノ粒子 / 白金-スズ合金 / カルボン酸の水素化 / キャッピング剤 / 水素還元 / 多元系ナノ粒子 / ポリオール法 / 合金 / 触媒・化学プロセス / 化学工学 / ナノ材料 |
Outline of Final Research Achievements |
Bimetallic SnPt nanoparticle (SnPt-NP) catalysts were prepared by using a polyol reduction method to elucidate the effective active site in SnPt bimetallic catalysts for hydrogenation of carboxylic acids to corresponding alcohols. From the results of TEM, the SnPt-NP catalysts with various Sn/Pt atomic ratios was confirmed to be successfully fabricated by changing the Sn/Pt atomic ratios in the starting mixture during the polyol reduction method. The different metal structures such as Pt metal, Sn1Pt3 alloy, and Sn1Pt1 alloy were obtained by controlling the Sn/Pt atomic ratios in the SnPt-NP catalysts. In comparison with the Pt metal phase, the Sn1Pt3 alloy phase facilitated the hydrogenation of acetic acid. No hydrogenation of acetic acid proceeded over the Sn1Pt1 alloy phase. The Sn1Pt3 alloy phase is suggested to be the most effective alloy structure in the SnPt bimetallic catalysts.
|
Academic Significance and Societal Importance of the Research Achievements |
カルボン酸の水素化は工業的に重要な反応であるが、カルボン酸は安定な化合物であるため水素化を行うには高温、高水素圧が必要である。安全性や経済性の向上には、高活性な触媒プロセスの開発が求められる。本研究の成果は、低温かつ低水素圧化を目指した高活性触媒を構築するための重要な設計指針となり、将来的に高活性化触媒を実用化することで反応プロセスを強化することにより省エネルギー化や少資源化に貢献できる。
|
Report
(4 results)
Research Products
(21 results)