Project/Area Number |
16K18310
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Aerospace engineering
|
Research Institution | Nagoya University (2017-2019) Japan Aerospace EXploration Agency (2016) |
Principal Investigator |
|
Project Period (FY) |
2016-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2016: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | 複合材料 / 有限要素解析 / 材料欠陥 / 損傷解析 / 炭素繊維複合材料 / 炭素繊維強化プラスティック / 材料不整 / 構造・機能材料 / シミュレーション工学 / 有限要素法 / X線コンピュータ断層法 / 航空宇宙工学 / 複合材料・物性 |
Outline of Final Research Achievements |
In this study, we conducted the following two subtopics in order to evaluate the effect of fiber waviness in CFRP on the macroscopic material properties: (a) To propose a method for evaluating the fiber waviness in CFRP, (b) To propose a multi-scale finite element analysis method that considers the effect of fiber waviness. In (a), we proposed a method for evaluating the fiber waviness in the 3-dimensional woven CFRP by applying image analysis technologies to the micro-focus X-ray CT technology. In (b), we regarded the fiber waviness as perturbation of the fiber position from the nominal position. We, therefore, proposed the model that considers the fiber waviness by using perturbation method. By using the method, the effect of the fiber waviness can be simulated by idealized CFRP model, in which fiber waviness is not included. Fiber waviness is given as the input to the model.
|
Academic Significance and Societal Importance of the Research Achievements |
①で得られた繊維うねりの定量化方法は,様々なCFRPに対して容易に使用することが可能である。したがって,CFRP内のうねりの定量化に対する寄与は大きい。広く複合材料工業に適用が期待される。 ②で得られた摂動法を用いた有限要素解析手法については,うねりを単一のモデルを用いて表現できることから,うねりの解析のコストを大幅に下げることが可能であり,複合材料工学に与える利点は大きい。このような解析は世界的にも類例はなく,今後,解析を非線形解析にも展開することが今後の課題である。
|