Project/Area Number |
16K18477
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
System genome science
|
Research Institution | The University of Tokyo |
Principal Investigator |
Oda Arisa 東京大学, 教養学部, 特任助教 (00760084)
|
Research Collaborator |
Hatakeyama Tetsuhiro S.
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2016: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
|
Keywords | 酵母 / ストレス応答 / グルコース飢餓ストレス応答 / 発現制御 |
Outline of Final Research Achievements |
Long noncoding RNAs serve critical regulatory functions in many biological phenomena. Some sense and antisense long noncoding RNAs are known to have antagonistic regulation. In S. pombe, glucose starvation induces sense long noncoding RNA transcription which leads to chromatin changes around fbp1 promoter. fbp1 codes for a gluconeogenesis enzyme, fructose-1,6-bisphosphatase and is repressed in glucose rich condition. Importantly, overlapping with the regions for sense long noncoding RNA transcription, small amounts of antisense RNAs are antagonistically transcribed in glucose rich condition. To estimate the effect of sense and antisense long noncoding RNA transcription, we conducted mathematical modeling of transcriptional dynamics at the fbp1 locus during changes in glucose concentration. From this study, it is suggested that the long noncoding RNA mediated gene regulation system is beneficial for survival of yeast cells under stressed condition.
|
Academic Significance and Societal Importance of the Research Achievements |
lncRNA依存的な遺伝子発現の制御メカニズムを分子レベルで解明するだけでなく、マクロな細胞集団レベルでの適応における役割を検証し、従来の分子生物学の枠にとらわれない新たな切り口で現象を説明した。厳しい栄養飢餓環境下で、能動的な移動手段を持たない単細胞生物が、環境にうまく適応して自らのリネージが生き延びるリスクヘッジの様子を、実験・数理モデルの両面から説明した。
|