Development of robust crop growth model that can take into account variations in field
Project/Area Number |
16K18778
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Agricultural environmental engineering/Agricultural information engineering
|
Research Institution | Tokyo University of Agriculture and Technology |
Principal Investigator |
Kenichi TATSUMI 東京農工大学, (連合)農学研究科(研究院), 准教授 (40505781)
|
Project Period (FY) |
2016-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2016: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
|
Keywords | イネ成長応答モデル / 野外圃場 / 生育調査 / 不確実性 / イネ生長応答モデル / イネ生長モデル / 作物モデル / 圃場 / 収量モデル / イネ / モデルパラメータ / 農業工学 / モデル化 |
Outline of Final Research Achievements |
The development of robust crop growth model can be applied to applied to diverse environmental fields and scenarios is an important for potential cultivation risks and their mitigation. In this study, I investigated the field growth survey of rice in the field and refine key model parameters based on the data assimilation method and the sequential updating method was developed. It was confirmed that the simulation accuracy was significantly improved compared to the model without data assimilation, thus demonstrating the effectiveness of this model.
|
Academic Significance and Societal Importance of the Research Achievements |
環境場や作物の生育状況のばらつきという複雑な課題に対して,農業現場で普及可能な作物成長の再現・予測するための基盤技術の確立が求められている.本研究において,幅広い技術展開を可能とする気候変動時代における作物の生育制御を実現するための基礎的な技術の開発に成功した.得られた成果は,モデル予測に基づく農産物栽培手法への貢献,作物の精密な栽培管理システム構築のための基盤的な技術になると考えている.
|
Report
(5 results)
Research Products
(15 results)