• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Machine learning modeling of automatic detection of failure modes in IMRT patient-specific QA

Research Project

Project/Area Number 16K19226
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Medical Physics and Radiological Technology
Research InstitutionNiigata University

Principal Investigator

Utsunomiya Satoru  新潟大学, 医歯学系, 助教 (50570868)

Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords強度変調放射線治療 / 機械学習 / ラジオミクス / IMRT / 放射線 / X線
Outline of Final Research Achievements

Intensity-modulated radiation therapy (IMRT) is a technique of radiation therapy with a relatively large dose uncertainty. IMRT dose verification is performed to assure that the radiation dose is accurately irradiated. The most commonly used “gamma analysis” method in IMRT dose verification has a problem that it is difficult to identify the cause of the error (failure mode). In this study, we constructed a machine learning model that uses the radiomic features, a widely used method in extracting features from medical images, as learning data set. The model showed high discrimination accuracy for all four analyzed IMRT failure modes. In the future, it may be necessary to verify the accuracy of the machine learning models with actual measured data as learning data set.

Academic Significance and Societal Importance of the Research Achievements

本研究は、CTやMRI等の医用画像の特徴量抽出に用いられる事の多かったラジオミクスの手法を、線量分布の特徴量抽出に適用することで有用な情報を引き出そうとする点で新規性が高い。また、本研究はIMRTの患者個別の線量検証における不具合を簡便に検出できるようになることを目指しているため、IMRTの実施に先立っての安全性の担保を以前より簡易的にかつ短時間で実施できるようになることが見込まれる。従って、IMRTの更なる普及や治療可能な患者数の飛躍的な増大につながることが期待される。

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (6 results)

All 2019 2018 2017 2016

All Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 2 results,  Open Access: 2 results,  Acknowledgement Compliant: 2 results) Presentation (4 results) (of which Int'l Joint Research: 3 results)

  • [Journal Article] Respiratory gating and multifield technique radiotherapy for esophageal cancer2017

    • Author(s)
      Ohta A, Kaidu M, Tanabe S, Utsunomiya S, Sasamoto R, Maruyama K, Tanaka K, Saito H, Nakano T, Shioi M, Takahashi H, Kushima N, Abe E, Aoyama H
    • Journal Title

      Jpn J Radiol

      Volume: 35 Issue: 3 Pages: 95-100

    • DOI

      10.1007/s11604-016-0606-7

    • NAID

      50012025036

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Journal Article] A study on a dental device for the prevention of mucosal dose enhancement caused by backscatter radiation from dental alloy during external beam radiotherap2016

    • Author(s)
      Katsura K, Utsunomiya S, Abe E, Sakai H, Kushima N, Tanabe S, Yamada T, Hayakawa T, Yamanoi Y, Kimura S, Wada S, Aoyama H, Hayashi T
    • Journal Title

      J Radiat Res

      Volume: 57 Issue: 6 Pages: 709-713

    • DOI

      10.1093/jrr/rrw092

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research / Acknowledgement Compliant
  • [Presentation] Feasibility of detecting the cause of errors in IMRT patient specific QA using radiomic features and machine learning2019

    • Author(s)
      坂井まどか、小荒井陽花、 笹本龍太、青山英史、宇都宮悟
    • Organizer
      第117回日本医学物理学会学術大会 (横浜市)
    • Related Report
      2018 Annual Research Report
  • [Presentation] Machine learning with radiomic features to detect the types of errors in IMRT patient-specific QA2019

    • Author(s)
      Madoka Sakai, Haruka Koarai, Masataka Ueda, Shogo Shigeta, Hisashi Nakano, Takeshi Takizawa, Satoshi Tanabe, Ryuta Sasamoto, Hidefumi Aoyama, Satoru Utsunomiya
    • Organizer
      61th American Association of Physicists in Medicine (AAPM) Annual Meeting(米国・サンアントニオ)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A Machine Learning-Based Approach to Specify the Cause of Error in IMRT Patient Specific QA2018

    • Author(s)
      Utsunomiya S, Sakai M, Koarai H, Takizawa T, Kushima N, Tanabe S, Aoyama H
    • Organizer
      60th American Association of Physicists in Medicine (AAPM) Annual Meeting(米国・ナッシュビル)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A Machine Learning-Based Approach to Specify the Cause of Error in IMRT Patient Specific QA2018

    • Author(s)
      S Utsunomiya, M Sakai, H Koarai, T Takizawa, N Kushima, S Tanabe, H Aoyama
    • Organizer
      60th AAPM annual meeting
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2016-04-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi