• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Improvement of McNemar test using Bayesian method

Research Project

Project/Area Number 16K19249
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Epidemiology and preventive medicine
Research InstitutionMie University

Principal Investigator

OGURA Toru  三重大学, 医学部附属病院, 講師 (00580060)

Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2016: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywords分割表 / マクネマー検定 / メタアナリシス / 信用区間 / 実質水準 / ベイズ法 / 統計数学
Outline of Final Research Achievements

It was known that the McNemar test was limited by its unexpectedly small power, and the McNemar test was improved using what can be expressed as a Bayesian test. As the determination of the critical region within the framework of "T≧α'" (α≠α'), α' was set so that the actual level becomes as high as possible while strictly observing the significance level. Next, we extended the proposed test to combinations of binary matched-pairs data from multiple strata. The test statistic was the product of the posterior probabilities of the multiple strata. In numerical experiments, the proposed test for multiple strata was superior when the test statistics of the individual strata were close. In addition, a novel credible interval of the binomial proportion was proposed by improving the Highest Posterior Density interval using the logit transformation. By the inverse logit transformation of the interval, the novel credible interval for the binomial proportion was obtained.

Academic Significance and Societal Importance of the Research Achievements

マクネマー検定は有意水準5%で検定しても実質水準が5%よりはるかに小さいことがあった。本研究の提案法を用いると有意水準を厳守しながら実質水準の高い検定を行うことができる。すなわち、検定が有意になりにくいことが改善された。また、複数試験の併合では、従来の各試験の分割表における各セルを足し合わせて併合の分割表によるマクネマー検定では、2試験の結果が極端であっても、併合後は良い結果の試験に引っ張られる可能性があったが、提案法では2試験の結果が安定していないと併合後の結果は良くならず、偶然を排除することができる検定であった。

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (7 results)

All 2018 2017 2016

All Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 2 results,  Open Access: 2 results) Presentation (5 results) (of which Int'l Joint Research: 2 results)

  • [Journal Article] Improvement of Bayesian Credible Interval for a Small Binomial Proportion Using Logit Transformation2018

    • Author(s)
      Toru Ogura, Takemi Yanagimoto
    • Journal Title

      Current Research in Biostatistics

      Volume: 8 Issue: 1 Pages: 1-8

    • DOI

      10.3844/amjbsp.2018.1.8

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Improving and extending the McNemar test using the Bayesian method2016

    • Author(s)
      Ogura, T. and Yanagimoto, T.
    • Journal Title

      Statistics in Medicine

      Volume: 35 Issue: 14 Pages: 2455-2466

    • DOI

      10.1002/sim.6875

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] 対応のある3×3分割表の検定方法に対するベイズ法を用いた改善2017

    • Author(s)
      小椋透、柳本武美
    • Organizer
      統計関連学会連合大会
    • Related Report
      2017 Research-status Report
  • [Presentation] Performance of Bayesian Credible Interval for Binomial Proportion using Logit Transformation2017

    • Author(s)
      Toru Ogura, Takemi Yanagimoto
    • Organizer
      IASC-ARS/NZSA 2017
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] 二項確率のロジット変換を用いた最高事後密度による信用区間2017

    • Author(s)
      小椋透・柳本武美
    • Organizer
      日本計量生物学会年会
    • Place of Presentation
      中央大学(東京都文京区)
    • Related Report
      2016 Research-status Report
  • [Presentation] Combining Evidences from Multiple Binary matched-Pairs Data using a Bayesian Approach2016

    • Author(s)
      Toru Ogura, Takemi Yanagimoto
    • Organizer
      37th Annual Conference of the international society of clinical biostatistics
    • Place of Presentation
      Birmingham (UK)
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] 二項確率のロジット変換値における信用区間の構成とその適用例2016

    • Author(s)
      小椋透・柳本武美
    • Organizer
      統計関連学会連合大会
    • Place of Presentation
      金沢大学(石川県金沢市)
    • Related Report
      2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi