EDTA soluble chemical components and the conditioned medium from mobilized dental pulp stem cells (MDPSCs) contain inductive microenvironment
Project/Area Number |
16K20549
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Dental engineering/Regenerative dentistry
|
Research Institution | Aichi Gakuin University |
Principal Investigator |
Hayashi Yuki 愛知学院大学, 歯学部, 助教 (10756547)
|
Project Period (FY) |
2016-04-01 – 2018-03-31
|
Project Status |
Completed (Fiscal Year 2017)
|
Budget Amount *help |
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2016: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
|
Keywords | 歯髄再生 / 微小環境 / 幹細胞移植 / 歯学 / 再生医学 |
Outline of Final Research Achievements |
Expression of an odontoblastic marker, enamelysin, and a pulp marker, thyrotropin-releasing hormone degrading enzyme (TRH-DE), was lower, and expression of a periodontal cell marker, anti-asporin/periodontal ligament-associated protein 1 (PLAP-1), was higher in the transplant of the EDTA-extracted teeth compared with the GdnHCl-extracted teeth. The autoclaved teeth reconstituted with the GdnHCl extracts or the EDTA extracts have weak regenerative potential and minimal angiogenic potential, and the CM significantly increased this potential. Combinatorial effects of the EDTA extracts and the CM on pulp/dentin regeneration were demonstrated in vivo, consistent with their in-vitro effects on enhanced proliferation, migration, and odontoblastic differentiation.
|
Report
(3 results)
Research Products
(3 results)