• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of a monitoring system of preventing falls from a bed using deep learning to recognize behavior for elderly people

Research Project

Project/Area Number 16K20847
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Gerontological nursing
Research InstitutionNational Institute of Information and Communications Technology (2017-2019)
Kochi National College of Technology (2016)

Principal Investigator

HIRONOBU SATOH  国立研究開発法人情報通信研究機構, ナショナルサイバートレーニングセンターサイバートレーニング研究室, 主任研究員 (90461384)

Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Keywords深層学習 / 行動認識 / 高齢者介護 / 深度センサ / HCI / 転落防止見守り / クラウド / 高齢者見守り / 人工知能 / 転落予測 / 挙動認識 / ベッドからの転落防止見守り
Outline of Final Research Achievements

Elderly people are more likely to suffer serious injuries such as broken bones and become bedridden if they fall from a bed. Therefore, the proposed system can recognize the signs of a fall from the continuous behavior of the elderly person on the bed, such as "flapping his legs" or "sitting on the bed" by an artificial intelligence. The proposed system of this research uses a Kinect to sense the body of person on the bed, and the DBN, which uses the data sensed by the Kinect as input information, understands the behavior and anticipate the fall. The behavior leading to falls is reported by health care professionals to be characteristic for each subject. Therefore, it is necessary to use data containing characteristic behaviors for learning. The realization of this mechanism allowed for the realization of individualized predictors of a fall.

Academic Significance and Societal Importance of the Research Achievements

医療機関における身体拘束は難しく,介護者による24時間の見守り介護が必要とされた。しかし,我が国の医療現場では,介護士不足が深刻であり, 24時間の見守り介護は難しい。介護士に代わり、人工知能によりモニタリングすることが本研究の狙いである。このシステムの実現により、事故防止によるQOLの向上、介護問題の解決およびわが国の医療費の抑制に繋がる。また、提案研究は,ヒトの行動を理解する知能マシンの創出と,人工知能研究において重要な意味を持つ,数少ない研究成果である。

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (5 results)

All 2019 2018 2017 2016

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (4 results) (of which Int'l Joint Research: 3 results)

  • [Journal Article] Adaptation Monitoring System Preventing Fall Down from a Bed for Individual Difference of Behavior2017

    • Author(s)
      Hironobu Satoh, Kyoko Shibata
    • Journal Title

      HCI International 2017 - Posters' Extended Abstracts

      Volume: 1 Pages: 280-284

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] Improvement of a Monitoring System for Preventing Elderly Fall Down from a Bed2019

    • Author(s)
      Hironobu SATOH
    • Organizer
      The 10th International Conference on Applied Human Factors and Ergonomics
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A Study of Adaptation the Monitoring System Preventing Fall Down from a Bed for the Individual Difference of a Behavior2018

    • Author(s)
      Hironobu Satoh, Kyoko Shibata
    • Organizer
      The 2nd International Conference on Human Systems Engineering and Design: Future Trends and Applications 2018,
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Development of Human Behavior Recognition for Avoiding Fall Down from a Bed by Deep Learning2016

    • Author(s)
      Hironobu Satoh, Kyoko Shibata
    • Organizer
      International Conference on Brain Informatics & Health
    • Place of Presentation
      Omaha(USA)
    • Year and Date
      2016-10-13
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] Deep learningとKinectによるベッドからの転落防止見守りシステムの検討2016

    • Author(s)
      佐藤公信, 芝田京子
    • Organizer
      LIFE 2016 第32回ライフサポート学会大会
    • Place of Presentation
      東北大学(宮城県・仙台市)
    • Year and Date
      2016-09-04
    • Related Report
      2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi