• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Buildling of work-flow to develop machine learning model for prediction of Hypertensive disorders of pregnancy (HDP)

Research Project

Project/Area Number 16K20899
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Life / Health / Medical informatics
Obstetrics and gynecology
Research InstitutionTohoku University

Principal Investigator

SATOSHI MIZUNO  東北大学, 東北メディカル・メガバンク機構, 助手 (80646795)

Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywordsバイオインフォマティクス / 機械学習 / フェノタイピング / 早期診断支援 / 深層学習 / 産科 / 妊娠高血圧症候群 / HDP / 情報学 / 生命情報学 / 産婦人科学 / 産科学 / 生命情報 / 人工知能 / 社会医学 / 医学情報学
Outline of Final Research Achievements

We considered the work-flow to develop supervised machine learning model for prediction of hypertensive disorders of pregnancy (HDP) with large-scale birth cohort dataset. To obtain class-label of supervised learning, we developed rule-based phenotyping algorithm according to clinical guidelines. The developed algorithm was applied into phenotyping of Birthree cohort subjects. We tried to develop the ML model to predict HDP with phenotyped disease types as class labels of supervised machine learning. In this study, we used Birthree cohort data before data-cleaning to develop the work-flow. In the future work, we will study with data after cleaning to develop precise informatics bases of HDP study in Birthree cohort study.

Academic Significance and Societal Importance of the Research Achievements

本研究で検討を行った大規模出生コホートでの妊娠高血圧症候群のフェノタイピングアルゴリズムによる病型分類と、病型分類の結果を正解ラベルとした機械学習モデル構築のワークフローは、三世代コホート調査における妊娠高血圧症候群の研究の重要な情報リソースの一つとなりうる。

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (8 results)

All 2018 2017

All Presentation (8 results) (of which Int'l Joint Research: 2 results,  Invited: 2 results)

  • [Presentation] Development of Took Medical Megabank Integrated Database "dbTMM" and phenotyping2018

    • Author(s)
      Mizuno S
    • Organizer
      The 5th CWRU-Tohoku Joint Workshop
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 妊娠高血圧症候群(HDP)フェノタイピングのためのアルゴリズムの検討2018

    • Author(s)
      水野聖士、菅原準一、八重樫伸生
    • Organizer
      第70回日本産科婦人科学会
    • Related Report
      2018 Annual Research Report
  • [Presentation] 妊娠高血圧症候群の早期診断支援へ向けた機械学習の開発と知識ベースの構築2018

    • Author(s)
      水野聖士
    • Organizer
      第1回生命情報学研究会
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Development of a phenotyping algorithm for Hypertensive Disorders of Pregnancy (HDP) in large-scale prospective genome cohort study2018

    • Author(s)
      Mizuno S, Wagata M, Nagaie S, Tamiya G, Kuriyama S, Tanaka H, Yaegashi N, Sugawara J, Ogishima S
    • Organizer
      ISSHP2018
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 妊娠高血圧症候群(HDP)患者の病型分類のためのフェノタイピングアルゴリズムの開発と大規模前向きゲノムコホートへの適用2018

    • Author(s)
      水野聖士、和形麻衣子、永家聖、田宮元、栗山進一、田中博、八重樫伸生、菅原準一、荻島創一
    • Organizer
      第39回日本妊娠高血圧学会学術集会
    • Related Report
      2018 Annual Research Report
  • [Presentation] 妊娠高血圧症候群のフェノタイピングアルゴリズムの検討2018

    • Author(s)
      水野聖士
    • Organizer
      第28回日本疫学会学術総会
    • Related Report
      2017 Research-status Report
  • [Presentation] 妊娠高血圧症候群の早期診断支援のための機械学習とゲノム情報の利活用2017

    • Author(s)
      水野聖士
    • Organizer
      NGS現場の会第5回大会
    • Related Report
      2017 Research-status Report
  • [Presentation] 疾患概念を構造化した妊娠高血圧腎症オントロジー(PEO)の開発2017

    • Author(s)
      水野聖士
    • Organizer
      第38回日本妊娠高血圧学会 総会・学術講演会
    • Related Report
      2017 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi