Project/Area Number |
16K20929
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Laboratory animal science
Integrative animal science
|
Research Institution | University of Tsukuba |
Principal Investigator |
|
Research Collaborator |
SUGIYAMA Fumihiro 筑波大学, 医学医療系, 教授
DAITOKU Yoko 筑波大学, 医学医療系, 技術員
HOSHINO Yoshikazu 筑波大学, 人間総合科学研究科, 大学院生
|
Project Period (FY) |
2016-04-01 – 2018-03-31
|
Project Status |
Completed (Fiscal Year 2017)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2017: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2016: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
|
Keywords | CRISPR/Cas9 / ノックイン / ノックインマウス / 細胞周期 / 発生工学 / ゲノム編集 |
Outline of Final Research Achievements |
Knock-in mice carrying mutations into target gene-locus are invaluable tools for functional characterization in vivo. In particular, multiple-gene knock-in mice are much in demand for life-scientists. To answer these needs, we aimed to establish more effective production methods for these mice. We adopted CRISPR/Cas9 genome-editing technology which allow simply and speedy production. However, knock-in efficiency mediated by this technology is tend to be low. Therefore, we focused on the relationship between cell-cycle and DNA-repair pathway which occurs during knock-in mutation. We developed an improved Cas9 protein which functions in specific cell-cycle and injected it into mouse zygotes to produce simple knock-in mice. Predictably, at some experiments, improved Cas9 allowed for more effective knock-in mice production compared with wild-type Cas9. In the next step, we try to produce multiple-gene knock-in mice.
|
Academic Significance and Societal Importance of the Research Achievements |
生体内で遺伝子機能を解析可能な遺伝子改変マウスは、生命科学研究にとって重要なツールである。その中でも、目的の配列を標的遺伝子座に挿入したノックインマウスは様々な研究分野で広く使われており、特に、分子間・細胞間の相互作用の解析や、より高次元のヒト化マウス作製などが可能となる、複数遺伝子をターゲットとしたノックインマウスの作製は高い需要がある。本研究では、特定の細胞周期のみで機能する改良型CRISPR/Cas9 システムを用いて、ノックイン効率を上昇させることを目指した。本成果を用いることで、多重遺伝子ノックインマウスのより効率的な作製方法が確立されることが期待される。
|