• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on development of prediction method of fall by large scale clinical nursing data and machine learning

Research Project

Project/Area Number 16K20977
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Clinical nursing
Medical and hospital managemen
Research InstitutionThe University of Tokyo

Principal Investigator

Yokota Shinichiroh  東京大学, 医学部附属病院, 助教 (90599490)

Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2016: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Keywords転倒・転落 / 電子カルテ / 機械学習 / 自然言語処理 / 医療安全管理 / 医療安全 / 患者安全 / データ二次利用 / 患者転倒予防 / 診療データ二次利用 / 看護必要度 / リスクマネジメント / リハビリテーション看護学
Outline of Final Research Achievements

A fall risk assessment model made by machine learning method shows 64.9% sensitivity and 69.6% specificity. Though the result was equivalent to previous studies, it required 40 days of calculation for learning and verification, therefore it was not efficient. Next, we investigated the influence of the implementation of the fall risk assessment tool by comparing the pre- and post-implementation periods. The fall probability of inpatients decreased in the post-implementation period and the fall probability of inpatients was equivalent between the tool-used patients and non-tool-used patients in the post implementation period. Moreover, we investigated the fall reports experimentally by the machine learning method. The results showed that the recognition of the fall related concept in the clinical field might be vague.
All researches were carried out as a retrospective observation study using electronic medical record data.

Academic Significance and Societal Importance of the Research Achievements

入院患者の転倒は多くの医療機関で入院中の医療インシデントの最も多いもののひとつで、外傷や死亡を引き起こす事があり、患者のQuality of Lifeの向上や医療資源の適切利用の観点からも、喫緊に解決すべき社会的課題である。国内外で患者転倒リスク評価手法はいくつも開発されているが、多くは開発用データが不十分であり、また多くは臨床での実際の転倒発生予防に効果があるかどうかが不明という課題がある。
今回の一連の研究は、医療リアルワールドデータをもとに機械学習を含む人工知能関連手法を活用した判定ロジックの開発、実装評価等を一連としてして実施している点で、学術的にも社会的にも意義があると考える。

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (9 results)

All 2018 2017 2016

All Journal Article (6 results) (of which Peer Reviewed: 3 results,  Open Access: 2 results,  Acknowledgement Compliant: 1 results) Presentation (2 results) (of which Int'l Joint Research: 1 results) Book (1 results)

  • [Journal Article] Study about Patient Fall Using Real World Data and Information Processing Technology2018

    • Author(s)
      Yokota Shinichiroh
    • Journal Title

      The Japanese Journal of Rehabilitation Medicine

      Volume: 55 Issue: 11 Pages: 905-909

    • DOI

      10.2490/jjrmc.55.905

    • NAID

      130007544043

    • ISSN
      1881-3526, 1881-8560
    • Year and Date
      2018-11-16
    • Related Report
      2018 Annual Research Report
  • [Journal Article] Can Staff Distinguish Falls: Experimental Hypothesis Verification Using Japanese Incident Reports and Natural Language Processing2018

    • Author(s)
      Yokota Shinichiroh, Shinohara Emiko, Ohe Kazuhiko
    • Journal Title

      Studies in Health Technology and Informatics

      Volume: 250 Pages: 159-163

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] 転倒・転落リスクアセスメントのあり方をツール開発評価の観点から検討する2018

    • Author(s)
      横田 慎一郎、安延 由紀子、上内 哲男
    • Journal Title

      日本転倒予防学会誌

      Volume: 5 Pages: 51-55

    • NAID

      130007430860

    • Related Report
      2018 Annual Research Report
    • Open Access
  • [Journal Article] Evaluating the Effectiveness of a Fall Risk Screening Tool Implemented in an Electronic Medical Record System.2017

    • Author(s)
      Yokota S, Tomotaki A, Mohri O, Endo M, Ohe K.
    • Journal Title

      Journal of Nursing Care Quality.

      Volume: published ahead of print Issue: 4 Pages: 1-6

    • DOI

      10.1097/ncq.0000000000000315

    • Related Report
      2018 Annual Research Report 2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] 転倒・転落リスクアセスメントに関する諸検討.2017

    • Author(s)
      横田慎一郎, 上内哲夫, 安延由紀子.
    • Journal Title

      日本転倒予防学会誌.

      Volume: 4(2) Pages: 39-39

    • Related Report
      2017 Research-status Report
  • [Journal Article] Establishing a classification system for high fall risk among inpatients using support vector machines.2017

    • Author(s)
      Yokota S, Miyoko E, Ohe K.
    • Journal Title

      CIN: Computers, Informatics, Nursing.

      Volume: 印刷中 Issue: 8 Pages: 408-416

    • DOI

      10.1097/cin.0000000000000332

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] Support Vector Machineを用いた入院患者転倒スクリーニングモデルの構築実験2016

    • Author(s)
      横田慎一郎, 遠藤美代子, 大江和彦.
    • Organizer
      第17回日本医療情報学会看護学術大会
    • Place of Presentation
      兵庫県神戸市
    • Year and Date
      2016-07-08
    • Related Report
      2016 Research-status Report
  • [Presentation] Evaluation of a Fall Risk Prediction Tool Using Large-Scale Data.2016

    • Author(s)
      Yokota S, Tomotaki A, Mouri O, Endo M, Ohe K.
    • Organizer
      13th International Congress in Nursing Informatics.
    • Place of Presentation
      Geneva, Switzerland
    • Year and Date
      2016-06-25
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Book] 認知症者の転倒予防とリスクマネジメント2017

    • Author(s)
      原田 敦、日本転倒予防学会、武藤 芳照、鈴木 みずえ
    • Total Pages
      408
    • Publisher
      日本医事新報社
    • ISBN
      9784784961795
    • Related Report
      2017 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi