Sentence intelligibility prediction model using time series analysis for hand-held intelligibility meter
Project/Area Number |
16K21584
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Architectural environment/Equipment
Perceptual information processing
|
Research Institution | Muroran Institute of Technology |
Principal Investigator |
|
Research Collaborator |
KONDO Kazuhiro
SAKAMOTO Shuichi
Ohta Kengo
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | 音声了解度 / 音声明瞭度 / 機械学習 / 屋外拡声システム / PAシステム / 予測モデル / 拡声システム / IoT / 了解度 / 聴きとりにくさ / プロトタイプ開発 / 屋外拡声 / 音声認識 / 時系列モデル / 了解度予測 / 統計モデル / 音声情報処理 / 時系列分析 / 拡声器品質 / 音声情報保護 |
Outline of Final Research Achievements |
Subjective speech quality assessment has been used widely for the development of public-address (PA) systems, speech masking systems, hearing aid, mobile-phone, etc. However, as this assessment is difficult in many cases, we propose an objective speech intelligibility evaluation system that includes a machine learning technique. Through outdoor-field recorded signal experiments, the effectiveness of these approaches could be verified.
|
Academic Significance and Societal Importance of the Research Achievements |
駅や空港,学校など音声を放送する拡声システムは様々なところに実装されているが,必ずしも聴き取りやすいとは言い難い。本研究ではより聴き取りやすい拡声システムの設計に利用可能な音声の了解度(聴き取りやすさ or 聴き取りにくさ)の計測器を機械学習技術を利用して開発する。これにより身近な音声システムが聴き取りやすく最適化されることで国民生活の向上を目指す。
|
Report
(4 results)
Research Products
(29 results)