• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Coding Theoretical Approach to the Representation and Covering Problems for Matroids(Fostering Joint International Research)

Research Project

Project/Area Number 16KK0103
Research Category

Fund for the Promotion of Joint International Research (Fostering Joint International Research)

Allocation TypeMulti-year Fund
Research Field Foundations of mathematics/Applied mathematics
Research InstitutionKumamoto University

Principal Investigator

Shiromoto Keisuke  熊本大学, 大学院先端科学研究部(工), 教授 (00343666)

Project Period (FY) 2017 – 2020
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥11,180,000 (Direct Cost: ¥8,600,000、Indirect Cost: ¥2,580,000)
Keywords符号理論 / マトロイド / 組合せ論 / 非線形符号 / 最小被覆数 / 線形符号 / 応用数学 / 数理工学 / 情報基礎
Outline of Final Research Achievements

In this fostering joint international research project, we focused on some matroid problems in our based research project on algebraic coding theory and then we mainly had the following results: (1) We gave some constructions of non-linear codes from powerful sets. (2) We derived an upper bound on covering numbers of matroids and we gave some constructions of matroids which attain the bound.

Academic Significance and Societal Importance of the Research Achievements

符号理論とは,デジタル情報を伝送または記録する際に生じる誤りを理論的に訂正するための誤り訂正符号の理論であり,その代数構造に着目して数理的研究をおこなうことが代数的符号理論である.本国際共同研究において得られた研究成果については,主に誤り訂正能力の高い非線形符号の構成法や秘密分散共有法や暗号理論等の情報セキュリティ分野において情報の秘匿化に有用なマトロイドの構成法を提案することで,今後の高度情報化社会におけるIoTやデータサイエンス分野への貢献が期待される.

Report

(2 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • Research Products

    (8 results)

All 2021 2020 2017 Other

All Int'l Joint Research (2 results) Journal Article (1 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results) Presentation (4 results) Remarks (1 results)

  • [Int'l Joint Research] Monash University(オーストラリア)2017

    • Year and Date
      2017-09-22
    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] University of New South Wales(オーストラリア)2017

    • Year and Date
      2017-08-31
    • Related Report
      2020 Annual Research Report
  • [Journal Article] Wei-type duality theorems for rank metric codes2020

    • Author(s)
      Thomas Britz, Adam Mammoliti, Keisuke Shiromoto
    • Journal Title

      Designs, Codes and Cryptography

      Volume: 88 Issue: 8 Pages: 1503-1519

    • DOI

      10.1007/s10623-019-00688-9

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] 有限環上のマトロイドの表現問題について2021

    • Author(s)
      今村浩二
    • Organizer
      2021年日本数学会年会
    • Related Report
      2020 Annual Research Report
  • [Presentation] An upper bound on critical exponents of Z_{p^m}-codes2020

    • Author(s)
      今村浩二
    • Organizer
      JCCA2020-DMIA2020-SGT9
    • Related Report
      2020 Annual Research Report
  • [Presentation] Classification on Generalized Weight Enumerators of Rank-Metric Codes2020

    • Author(s)
      近藤隼史
    • Organizer
      JCCA2020-DMIA2020-SGT9
    • Related Report
      2020 Annual Research Report
  • [Presentation] 有限環上の符号を用いたマトロイドの構成について2020

    • Author(s)
      今村浩二
    • Organizer
      2020年度応用数学合同研究集会
    • Related Report
      2020 Annual Research Report
  • [Remarks] 研究紹介ぺージ

    • URL

      https://www.fast.kumamoto-u.ac.jp/wp/wp-content/uploads/2018/04/keisuke_shiromoto.pdf

    • Related Report
      2020 Annual Research Report

URL: 

Published: 2017-03-15   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi