Nano space platform technology for formulation of a mechanical plasmon device (Fostering Joint International Research)
Project/Area Number |
16KK0150
|
Research Category |
Fund for the Promotion of Joint International Research (Fostering Joint International Research)
|
Allocation Type | Multi-year Fund |
Research Field |
Nano/Microsystems
|
Research Institution | Kagawa University |
Principal Investigator |
|
Research Collaborator |
Baumberg Jeremy John ケンブリッジ大学, キャベンディッシュ研究所ナノフォトニクスセンター, 教授、センター長
Zheludev Nikolay I. サウサンプトン大学, オプトエレクトロニクス研究センター, 教授、センター長
Yamamoto Kazuhiro
|
Project Period (FY) |
2017 – 2018
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥14,040,000 (Direct Cost: ¥10,800,000、Indirect Cost: ¥3,240,000)
|
Keywords | 表面プラズモン / MEMS / 単結晶 / 薄膜 / メカニカルプラズモニクス / アクティブ / 単結晶金属薄膜 |
Outline of Final Research Achievements |
Nano-dynamic and coupling plasmonic gap controlled by nano-electro-mechanical system actuator has become a precisely managing a resonances and field enhancements in nanometre scale. We demonstrated the mechanical plasmonic device consists of grating and wires can be changed structure using a sticking, and tuned coupling plasmon resonance by electrical signals, which in visible spectral bands. Approaching to control the space, we performed from 400 to 15 nm in gaps. Otherwise, we demonstrate the fabrication of a low-loss singlecrystalline Ag nanostructure deposited on transparent substrates. Our approach is based on an epitaxial growth technique in which a NaCl(001) substrate is used. The NaCl substrate is dissolved in water to allow the Ag film to be transferred onto the desired substrates. Further, spectroscopic ellipsometry measurements indicated that the imaginary part of the dielectric constant of the single-crystalline film was smaller than that of a polycrystalline film.
|
Academic Significance and Societal Importance of the Research Achievements |
ナノフォトニクス研究、特にナノメートルスケールの量子プラズモニクスの第一人者であるBaumberg教授や再構成可能なメタマテリアルの第一線で活躍するZheludev教授らの研究内容は、本申請課題と直結するものであり、適切かつ迅速にキャッチアップすることで、国内外でも一目置かれる存在になり、追従を許さない成果を得たと確信している。今後、メカニカルプラズモンデバイスと基盤周辺技術を展開することで、多機能から高機能、そして「高性能」な光電子デバイスへの応用が期待できる。そして、新規な光・電子物性を発見するためのツールの1つになるだろう。
|
Report
(2 results)
Research Products
(12 results)