Design principle of super-resilient system inspired by creature that can autotomize
Project/Area Number |
16KT0099
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Multi-year Fund |
Section | 特設分野 |
Research Field |
Intensification of Artifact Systems
|
Research Institution | Tohoku University |
Principal Investigator |
Kano Takeshi 東北大学, 電気通信研究所, 准教授 (80513069)
|
Co-Investigator(Kenkyū-buntansha) |
青沼 仁志 北海道大学, 電子科学研究所, 准教授 (20333643)
|
Project Period (FY) |
2016-07-19 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥18,460,000 (Direct Cost: ¥14,200,000、Indirect Cost: ¥4,260,000)
Fiscal Year 2019: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2018: ¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2017: ¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2016: ¥5,980,000 (Direct Cost: ¥4,600,000、Indirect Cost: ¥1,380,000)
|
Keywords | 自律分散制御 / レジリエンス / 生物模倣ロボット / クモヒトデ / ロボット / 制御工学 |
Outline of Final Research Achievements |
Current artificial systems have difficulty in adapting to their physical damages and changes in the environment. To address this issue, we focused on brittle stars which can occasionally lose some of their arms and promptly coordinate the remaining arms to escape from predators, and aimed to elucidate the control mechanism underlying their resilient locomotion through behavioral experiments, mathematical modeling, and robot experiments. Specifically, we observed the way of inter- and intra-arm coordination during the locomotion of brittle stars whose arms were partially removed, and proposed a mathematical model on this basis. The proposed model was validated by real-world experiments with a brittle star-like robot developed. We also performed behavioral experiments in which circumoral nerve ring was partially transected, and clarified the mechanism for the determination of moving direction.
|
Academic Significance and Societal Importance of the Research Achievements |
移動ロボットが未知の実世界環境下で動き回るためには,ロボットの一部が故障してもリアルタイムに適応し,移動能力を維持することが不可欠である.しかしながら,従来のロボットは想定外の故障に即座に適応するのは困難であった.本成果は,世界で始めて想定外の故障に即座に適応可能なロボットを実現できた点で意義深く,今後災害現場などの過酷な環境下でも機能できる移動ロボットの実現へと道が切り拓かれると期待される. また,理学的観点においては,動物が身体の一部に傷害を負ったときに,身体の協調の仕方を適切に変えて動く原理の解明にもつながると期待できる.
|
Report
(5 results)
Research Products
(15 results)