• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Application fo topological data analisys to geographic information

Research Project

Project/Area Number 16KT0131
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section特設分野
Research Field Mathematical Sciences in Search of New Cooperation
Research InstitutionShinshu University

Principal Investigator

Numata Yasuhide  信州大学, 学術研究院理学系, 准教授 (00455685)

Co-Investigator(Kenkyū-buntansha) 武者 忠彦  信州大学, 学術研究院社会科学系, 准教授 (70432177)
田中 康平  信州大学, 学術研究院社会科学系, 助教 (70708362)
Project Period (FY) 2016-07-19 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2016: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords代数的トポロジー / パーシステントホモロジー / 地理情報 / 計算代数トポロジー的データ解析. / GISデータ / 代数トポロジー的データ解析 / 地理データ
Outline of Final Research Achievements

The purpose of this research project was to try to apply methods of topologiacal data analysis to data of geographic information systems. We had some seminars to discuss with researchers in the related areas. In the seminar, we discuss and study the related algebraic topology and methods of topological data analysis. Moreover we calculated the persistence homologies of data of positions of public facilities, e.g., bus stops in some cities. We tried to classify the data sets by differences of persistence homologies.

Academic Significance and Societal Importance of the Research Achievements

パーシステントホモロジーは代数的トポロジー的データ解析手法の一つであり, 材料科学などの主に自然科学の分野で, 従来にはできなかったデータ解析を可能にしてきたが, 地理データへの応用はなかった. パーシステントホモロジーは, 互いに独立した点のデータに外部からネットワークの構造を付加した上で, そのネットワークを解析しているものと思うことができるため, 地理データが暗にもつネットワーク構造と強い相関をもつデータに地理データを粗視化することが期待でき, 地理データへのパーシステントホモロジーの応用は自然である.

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (1 results)

All 2018

All Journal Article (1 results) (of which Peer Reviewed: 1 results)

  • [Journal Article] Strong homotopy types of acyclic categories and Δ-complexes. Applied Categorical Structures2018

    • Author(s)
      Kohei Tanaka
    • Journal Title

      Applied Categorical Structures

      Volume: 27 Issue: 3 Pages: 245-260

    • DOI

      10.1007/s10485-018-9552-0

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed

URL: 

Published: 2016-07-20   Modified: 2023-03-08  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi