• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Quiver varieties, moduli spaces and representation theory

Research Project

Project/Area Number 17340005
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionKyoto University

Principal Investigator

NAKAJIMA Hiraku  Kyoto University, Graduate School of Sciences, Professor, 大学院理学研究科, 教授 (00201666)

Co-Investigator(Kenkyū-buntansha) ISHII Akira  Hiroshima University, Graduate School of Sciences, Associate Professor, 大学院理学研究科, 助教授 (10252420)
YOSHIOKA Kota  Kobe University, Graduate School of Sciences, Professor, 大学院理学研究科, 教授 (40274047)
Project Period (FY) 2005 – 2006
Project Status Completed (Fiscal Year 2006)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,900,000)
Fiscal Year 2006: ¥1,700,000 (Direct Cost: ¥1,700,000)
Fiscal Year 2005: ¥2,200,000 (Direct Cost: ¥2,200,000)
KeywordsInstanton counting / Donaldson invariants / wall-crossing formula / prepotential
Research Abstract

Together with Kota Yoshioka and Lothar Gottsche I have studied relation between Donaldson invariants and Nekrasov's partition function. Further more, Takuro Mochizuki have joined our group to continue the research.
Donaldson invariants are defined as integration of natural cohomology classes over moduli spaces of instantons on 4-manifolds.
When the underlying 4-manifold has b_+ =1, the invariants depends on the choice of a Riemannian metric. The wall-crossing formula gives the difference of Donaldson invariants with respect to two Riemannian metrics. We express the wall-crossing formua in terms of Nekrasov's partition function, when the rank of vector bundles is 2. This was proved via a study of the torus action on the moduli space when the underlying 4-manifold is a toric surface. This research is an expansion of one started in 2004, we give the proof that the same formula holds for arbitrary projective surfaces, not necessarily toric surfaces.
We further study the K-theoretic version of instanton counting. We study the theta function associated with the Seiberg-Witten curve which is a mirror of K-theoretic instanton couting and show that the Seiberg-Witten curve can be reconstructed from the coordinate ring of moduli spaces. This result is the K-theoretic generalization of the Nekrasov's conjecture. We also prove the wall-crossing formula similar to above, but we do not understand how to define the invariants using the instanton moduli spaces, due to singularieties. So we restrict our attention to the case of projective surfaces, and define invariants as holomorphic Euler characteristic of natural line bundles over the algebra-geometric compactification of the moduli spaces.
With helps of Takuro Mochizuki, we study higher rank (>2) cases, and we prove a recursive expression of the wall-crossing formula, and proved that it is again given by the Nekrasov's partition function.

Report

(3 results)
  • 2006 Annual Research Report   Final Research Report Summary
  • 2005 Annual Research Report
  • Research Products

    (10 results)

All 2007 2006 2005

All Journal Article (10 results)

  • [Journal Article] インスタントンの数え上げとDonaldson不変量2007

    • Author(s)
      中島 啓, 吉岡 康太
    • Journal Title

      数学 59・2

      Pages: 131-153

    • NAID

      10019542192

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Annual Research Report 2006 Final Research Report Summary
  • [Journal Article] Instanton counting and Donaldson invariants (in Japanese)2007

    • Author(s)
      Hiraku Nakajima, Kota Yoshioka
    • Journal Title

      Sugaku 59・2

      Pages: 131-153

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Level 0 monomial crystals2006

    • Author(s)
      David Hernandez, Hiraku Nakajima
    • Journal Title

      Nagoya Math. J. 184

      Pages: 85-153

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Annual Research Report 2006 Final Research Report Summary
  • [Journal Article] Level 0 monomial crystals2006

    • Author(s)
      David Hernandez, Hiraku Nakajima
    • Journal Title

      Nagoya Math.J. 184

      Pages: 85-153

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Instanton counting on blowup. I. 4-dimensional pure gauge theory2005

    • Author(s)
      Hiraku Nakajima, Kota Yoshioka
    • Journal Title

      Invent. Math 162・2

      Pages: 313-355

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Instanton counting on blowup. II. K-theoretic partition funtion2005

    • Author(s)
      Hiraku Nakajima, Kota Yoshioka
    • Journal Title

      Transform. Groups 10・3-4

      Pages: 489-519

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Autoequivalences of derived categories on the minimal resolutions of A_n-singularities on surfaces2005

    • Author(s)
      Akira Ishii, Hokuto Uehara
    • Journal Title

      Journal of Differential Geom. 71・3

      Pages: 385-435

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary 2005 Annual Research Report
  • [Journal Article] Instanton counting on blowup. I. 4-dimensional pure gauge theory2005

    • Author(s)
      Hiraku Nakajima, Kota Yoshioka
    • Journal Title

      Invent.Math 162・2

      Pages: 313-355

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary 2005 Annual Research Report
  • [Journal Article] Instanton counting on blowup. II. K-theoretic partition funtion2005

    • Author(s)
      Hiraku Nakajima, Kota Yoshioka
    • Journal Title

      Transform.Groups 10・3-4

      Pages: 489-519

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary 2005 Annual Research Report
  • [Journal Article] Autoequivalences of derived categories on the minimal resolutions of A_n-singularities on surfaces2005

    • Author(s)
      Akira Ishii, Hokuto Uehara
    • Journal Title

      Journal of Differential Geom. 71-3

      Pages: 385-435

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary

URL: 

Published: 2005-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi