Budget Amount *help |
¥14,000,000 (Direct Cost: ¥14,000,000)
Fiscal Year 2006: ¥2,700,000 (Direct Cost: ¥2,700,000)
Fiscal Year 2005: ¥11,300,000 (Direct Cost: ¥11,300,000)
|
Research Abstract |
The vitreous body is a tenuous gel that contains collagen and hyaluronic acid.4 The fraction of the polymer network is only about 1-2%, and the remaining is water. The vitreous body is located between the lens and the retina, and comprises 80% of the overall volume of eye. The functions of the vitreous body are supposed to keep the shape of the eyeball, to absorb the external mechanical shock, to maintain the homoeostasis of the eye, and to regulate the position of the lens. The appearance of fresh vitreous body is transparent, and hence, the vitreous body is considered a uniform tissue. Many studies performed to date have suggested that hyaluronic acid, which has a coil shape, is uniformly distributed of scattered light intensities and dynamics from bovine vitreous body in vitro, subjected to the changes in the external conditions. These studies will promote better understanding of the function and the mechanism of diseases of the vitreous body. The phase equilibrium property and struc
… More
tural and dynamical properties of bovine vitreous body was studied by macroscopic observation of swelling behavior and dynamic light scattering under various conditions. It was found that the vitreous body collapses into a compact state isotropically or anisotropically depending on the external conditions. The vitreous body collapses while maintaining the shape when the pH (< 4) and the concentration of calcium ions (e 1 mol/L) are changed, whereas it collapses along the orbital axis in a mixed solvent of methanol and water. From observations of the dynamics of light scattered by the vitreous body, intensity autocorrelation functions that revealed two independent diffusion coefficients were obtained. The diffusion coefficients were found to be statistically independent of position within a focal depth range of 1-1.5 mm. Divergent behavior in the measured total scattered light intensities and diffusion coefficients was observed as the concentration of calcium ion approached the critical threshold, 1 mol/L. Namely, a slowing down of the dynamic modes accompanied by increased "static" scattered intensities was observed. The divergent behavior in the scattered light intensities and diffusion coefficients was reversible. This is indicative of the occurrence of a phase transition upon calcium ion concentration. Polyvinylalcohol (PVA) hydrogel cross-linked by gamma irradiation was assessed as a possible vitreous substitute. From a series of experiments, rise of intraocular pressure and inflammatory changes in the vitreous cavity after operation were observed in some cases. Crab-eating macaques were used for this experiment. PVA gels were injected into vitreous cavity after vitrectomy and followed clinically by opthalmoscopy, tonometry, fundus photography, electroretinogram (ERG), chemotaxis, and flare cell meter. Histopathologic examination by light and electron microscopy was performed after 3 months. As a result, there were no significant changes in ophthalmoscopic findings. No abnormal rising of intraocular pressure (IOP) was recognized. ERG did not show meaningful amplitude weakness. From the photon counting of flare cell meter, significant break of blood-aqueous barrier and blood-retinal barrier was not observed. Histopathologic examination revealed that all layers of the retina were intact and no loss of tissue was evident. However, in PVA gel-injected eyes, some vacuolations of the inner retina were found in some specimens. To conclude, PVA gel was well tolerated in these experiments. The gel with a network similar to the vitreous body showed the best biocompatibility, though it is necessary to investigate the biocompatibility for the long-term. PVA gel is a good candidate for a vitreous substitute. Less
|