• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Fully automatic modeling of image-objects out of example images

Research Project

Project/Area Number 17500061
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Media informatics/Database
Research InstitutionThe University of Electro-Communications

Principal Investigator

WATANABE Toshinori  The University of Electro-Communications, Graduate school of Information Systems, Professor, 大学院情報システム学研究科, 教授 (10242348)

Co-Investigator(Kenkyū-buntansha) KOGA Hisashi  The University of Electro-Communications, Graduate school of Information Systems, Associate Professor, 大学院情報システム学研究科, 助教授 (40361836)
YOKOYAMA Takanori  The University of Electro-Communications, Graduate school of Information Systems, Assistant Professor, 大学院情報システム学研究科, 助手 (10401621)
Project Period (FY) 2005 – 2006
Project Status Completed (Fiscal Year 2006)
Budget Amount *help
¥2,200,000 (Direct Cost: ¥2,200,000)
Fiscal Year 2006: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2005: ¥1,100,000 (Direct Cost: ¥1,100,000)
KeywordsImage Understanding / Multimedia / Object structure modeling / Object behavior modeling / Data compress ion / Video / Compressed image data analysis / オブジェクト構造モデリング / オブジェクト動作モデリング / 自動モデリング / 自動プログラミング / 監視システム
Research Abstract

The possibility of an automatic image-object modeling is studied and affirmative results are attained as follows.
1.Object model extraction out of still images
Suppose we can compress the original image largely by giving a new name to a set of clustered color regions, we may consider
the region set as an object. Using a few object plausibility measures side by side with this principle, we could succeed in extracting, fully automatically, structural descriptions of cartoons, faces, and playthings out of color images. The structural human model could also be extracted out of a still image made up of a few frames of a human walking video.
2.Object model extraction out of a video
Se developed an algorithm composed of, the moving object extraction by background elimination, the border curve feature vector extraction, and the novelty analysis by voting from learned vectors to the incoming vector. Novel one is stored as a new model, otherwise only a model label (= recognition result) is output. Primitive human actions, i. e., walking and nodding, etc., could be extracted and used for further recognition in online real-time mode.
3.Additional outcome of 1.
Finding a set of clustered color regions in a segmented image is one of the most important tasks in 1 above. We reduced this problem into a graph matching problem, i. e., a maximum clique problem and proposed two efficient algorithms to solve it, both exploiting graph attribute information. One uses them in the process of maximum clique search and the other uses them for original graph reduction. Both are effective, but the latter dominates the former.
4.Additional outcome of 2.
The system in 2 above requires a melted video streams. So we need the decompression of a compressed video data. We examined a new possibility of video analysis directly in a compressed data domain and succeeded to track a walking person in MPEG compressed video.

Report

(3 results)
  • 2006 Annual Research Report   Final Research Report Summary
  • 2005 Annual Research Report
  • Research Products

    (13 results)

All 2007 2006 2005

All Journal Article (13 results)

  • [Journal Article] 投票機構による動作オブジェクトのオンラインリアルタイム学習と認識2007

    • Author(s)
      吉岡泰智, 渡辺俊典, 古賀久志, 横山貴紀
    • Journal Title

      電子情報通信学会和文論文誌D Vol. J90-D, No.1

      Pages: 83-93

    • NAID

      110007380564

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Voting-Based Online Realtime Learning and Recognition of Motion Objects2007

    • Author(s)
      T.Yoshioka, T.Watanabe, et al.
    • Journal Title

      The IEICE Transactions on Information and Systems(Japanese Edition) Vol.J90-D, No.1

      Pages: 83-93

    • NAID

      110007380564

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] 投票機構による動作オブジエクトのオンラインリアルタイム学習と認識2007

    • Author(s)
      吉岡泰智, 渡辺俊典, 古賀久志, 横山貴紀
    • Journal Title

      電子情報通信学会和文論文誌D Vol. J90-D, No.1

      Pages: 83-93

    • Related Report
      2006 Annual Research Report
  • [Journal Article] 圧縮性とオブジェクトらしさ尺度に着目した画像からのオブジェクト自動抽出法2006

    • Author(s)
      杉山英行, 古賀久志, 渡辺俊典, 横山貴紀
    • Journal Title

      信学技報 PRMU 2006-160

      Pages: 183-188

    • NAID

      110005717945

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] MPEGビデオデータの動きベクトルを用いた移動物体追跡手法2006

    • Author(s)
      岩崎敏紀, 横山貴紀, 渡辺俊典, 古賀久志, 阿部龍士
    • Journal Title

      信学技報 PRMU 2006-81

      Pages: 33-40

    • NAID

      110004820687

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Automatic Extraction of Objects out of Images using Data Compression and Object Likeliness2006

    • Author(s)
      H.Sugiyama, H.Koga, et al.
    • Journal Title

      IEICE Technical Report(PRMU) 2006-160

      Pages: 183-188

    • NAID

      110005717945

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] An Efficient Implementation of Attribute-Graph Matching Algorithm2006

    • Author(s)
      A.Morita, H.Koga, et al.
    • Journal Title

      IPSJ SIG Technical Report AL 105-8

      Pages: 49-54

    • NAID

      110004687072

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Moving Object Detection Using Motion Vectors in MPEG Video Data2006

    • Author(s)
      T.Iwasaki, T.Yokoyama, et al.
    • Journal Title

      IEICE Technical Report(PRMU) 2006-81

      Pages: 33-40

    • NAID

      110004820687

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] 圧縮性とオブジエクトらしさ尺度に着目した画像からのオブジェクト自動抽出法2006

    • Author(s)
      杉山英行, 古賀久志, 渡辺俊典, 横山貴紀
    • Journal Title

      信学技報 PRMU 2006-160

      Pages: 183-188

    • Related Report
      2006 Annual Research Report
  • [Journal Article] MPEGビデオデータの動きべクトルを用いた移動物体追跡手法2006

    • Author(s)
      岩崎敏紀, 横山貴紀, 渡辺俊典, 古賀久志, 阿部龍士
    • Journal Title

      信学技報 PRMU 2006-81

      Pages: 33-40

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Online Automatic Acquisition of Human Motion Models with Voting2005

    • Author(s)
      T.Yoshioka, H.Koga, et al.
    • Journal Title

      IEICE Technical Report(PRMU) 2005-83

      Pages: 119-124

    • NAID

      110003275988

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] 投票機構を用いた動作モデルのオンライン自動獲得2005

    • Author(s)
      吉岡, 古賀, 渡辺, 横山
    • Journal Title

      信学技報 PRMU 2005-56

      Pages: 119-124

    • NAID

      110003275988

    • Related Report
      2005 Annual Research Report
  • [Journal Article] 属性付きグラフマッチングアルゴリズムの効率的な実装2005

    • Author(s)
      森田, 古賀, 渡辺, 横山
    • Journal Title

      情報処理学会研究報告 AL-105(to appear)

    • NAID

      110004687072

    • Related Report
      2005 Annual Research Report

URL: 

Published: 2005-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi