• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Learning of Bayesian Neural Networks and Their Applications to Hidden Markov Chain

Research Project

Project/Area Number 17500153
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Sensitivity informatics/Soft computing
Research InstitutionAichi Gakuin University

Principal Investigator

ITO Yoshifusa  Aichi Gakuin University, Department of Policy Studies, Lecturer (10022774)

Co-Investigator(Kenkyū-buntansha) ITO Yoshifusa  Aichigakuin university, Department of policy studies, Part-time Lecturer (17500153)
Project Period (FY) 2005 – 2007
Project Status Completed (Fiscal Year 2007)
Budget Amount *help
¥3,410,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥210,000)
Fiscal Year 2007: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2006: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 2005: ¥1,800,000 (Direct Cost: ¥1,800,000)
KeywordsNeural network / Hidden Markov chain / Bayesian decision / ベイズ判別関数 / 三層神経回路網 / 学習 / ベイズ神経回路網 / 判別関数 / 関数近似 / 多項式
Research Abstract

The goal of this research was to develop a sophisticated neural network which can learn the Bayesian discriminant function and, to use it to estimate the hidden Markov chain. The results we have obtained during the period of the research supported by the Grant-in-Aid for Scientific Research c can be summarized into three points.
1. The three layer neural network, which may learn a Bayesian discriminant function, had been proposed before we started the present work. However, it had difficulty in learning. As it is a general belief that a neural network having fewer units can learn better, we first tried to decrease the hidden units. We have theoretically proved that the small number of the hidden units of our network is actually the minimum.
2.In the rase where the probability distributions are simple, this network, having the minimum number of hidden units, can be used for estimating the hidden Markov chain. When this network is equipped with parameter units, it can learn simultaneously several Bayesian discriminant functions respectively corresponding to the several states of the hidden Markov chain.
3.However, the network cannot learn the dicriminant functions in general cases. The reason is that learning with dichotomous teacher signals is difficult. So we constructed a new type of neural network, where the degree of freedom of the hidden units is limited. Though this inevitably causes an increment of hidden units, the network performs better The theory is stated in a paper which is now in printing, and the simulation results have been presented at a domestic and several international conferences.
Thus, when the probability distributions are simple the network can estimate the hidden Markov chains. Even in general cases, the recent results are promising.

Report

(4 results)
  • 2007 Annual Research Report   Final Research Report Summary
  • 2006 Annual Research Report
  • 2005 Annual Research Report
  • Research Products

    (27 results)

All 2009 2008 2007 2006 2005

All Journal Article (7 results) (of which Peer Reviewed: 3 results) Presentation (20 results)

  • [Journal Article] Simultaneous approximations of polynomials and derivatives and their applications to neural networks2009

    • Author(s)
      Yoshifusa Ito
    • Journal Title

      Neural Computation 21

      Pages: 1-36

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] Simultaneous approximations of polynomials and derivatives and their applications to neural networks2009

    • Author(s)
      Yoshifusa Ito, Cidambi Srinivasan
    • Journal Title

      Neural Computation 21(in printing)

      Pages: 1-36

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] Simultaneous approximation of polynomials and derivatives and their applications to neural networks2008

    • Author(s)
      Yoshifusa Ito,
    • Journal Title

      Neural Computation 20(ゲラ刷りによる)

      Pages: 1-35

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Discriminant analysis by a neural network with Mahalanobis distance2006

    • Author(s)
      Yoshifusa Ito, Cidambi Srinivasan, Hiroyuki Izumi
    • Journal Title

      Artificial Neural Networks, ICANN 2006 LNCS4131

      Pages: 350-360

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Bayesian decision theory on three-layer neural networks2005

    • Author(s)
      Yoshifusa Ito, Cidambi Srinivasan
    • Journal Title

      Neurocomputing 63

      Pages: 209-228

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary 2005 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A simple algebraic method for integrating polynomials2005

    • Author(s)
      Yoshifusa Ito
    • Journal Title

      Mathematical Scientist 30

      Pages: 64-66

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Bayesian learning of neural networks adapted to changes of prior probabilities2005

    • Author(s)
      Yoshifusa Ito, Cidambi Srinivasan, Hiroyuki Izumi
    • Journal Title

      Artificial Neural Networks : Formal Models and Their Applications-ICANN 2005 LNCS3697

      Pages: 253-259

    • Related Report
      2005 Annual Research Report
  • [Presentation] 内部パラメータの外部パラメータへの変換2008

    • Author(s)
      伊藤嘉房、泉寛幸
    • Organizer
      ニューロコンピューティング研究会(NC)
    • Place of Presentation
      玉川大学
    • Year and Date
      2008-03-12
    • Related Report
      2007 Annual Research Report
  • [Presentation] 内部パラメータの外部パラメータへの変換2008

    • Author(s)
      伊藤 嘉房、泉 寛幸
    • Organizer
      電子情報通信学会ニューロコンピューティング研究会
    • Place of Presentation
      玉川
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] Multi-category Bayesian decision by neural networks2008

    • Author(s)
      Yoshifusa Ito, Cidambi Srinivasan, Hiroyuki Izumi
    • Organizer
      International Conference on Artificial Neural Networks
    • Place of Presentation
      Prague
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] Conversion of inner parameters to outer parameters2008

    • Author(s)
      Yoshifusa Ito, Hiroyuki Izumi
    • Organizer
      Workshop on Neurocomputing.
    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] Multi-category Bayesian Decision by Neural Networks2008

    • Author(s)
      Yoshifusa Ito, Cidambi Srinivasan, Hiroyuki Izumi
    • Organizer
      International Conference on Artificial Neural Networks.
    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] Learning of Bayesian discriminant functions by a layered neural network2007

    • Author(s)
      Yoshifusa Ito, Cidambi Sri-nivasan, Horiyuki Izumi
    • Organizer
      国際神経情報処理学会(ICONIP07)
    • Place of Presentation
      九州工業大学
    • Year and Date
      2007-11-15
    • Related Report
      2007 Annual Research Report
  • [Presentation] A neural network having fewer inner constants to be trained and Bayesian decision.2007

    • Author(s)
      Yoshifusa Ito, Cidambi Sri-nivasan, Hiroyuki Izumi
    • Organizer
      国際合同神経回路網学会(IJCNN07)
    • Place of Presentation
      ルネッサンス ホテル、オランド、フロリダ州、米国
    • Year and Date
      2007-08-14
    • Related Report
      2007 Annual Research Report
  • [Presentation] 2値乱数による神経回路網の学習とベイズ判別関数学習への応用2007

    • Author(s)
      伊藤嘉房、キダンビ スリニヴァサン、泉寛幸
    • Organizer
      ニューロコンピューティング研究会(NC)
    • Place of Presentation
      沖縄科学技術研究基盤整備機構
    • Year and Date
      2007-06-15
    • Related Report
      2007 Annual Research Report
  • [Presentation] 2値乱数による神経回路網の学習とベイズ判別関数学習への応用2007

    • Author(s)
      伊藤 嘉房、C.スリニヴァサン、泉 寛幸
    • Organizer
      電子情報通信学会ニューロコンピューティング研究会
    • Place of Presentation
      沖縄
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] A neural network having fewer inner constants to be trained and Bayesian decision2007

    • Author(s)
      Yoshifusa Ito, Cidambi Srinivasan, Hiroyuki Izumi
    • Organizer
      International Joint Conference on Neural Networks
    • Place of Presentation
      Florida
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] Learning of Bayesian discriminant functions by a layered neural network2007

    • Author(s)
      Yoshifusa Ito, Cidambi Srinivasan, Hiroyuki Izumi
    • Organizer
      International Conference on Neural Information Processing
    • Place of Presentation
      北九州市
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] Learning of neural networks with dichotomic random teacher signals2007

    • Author(s)
      Yoshifusa Ito, Cidambi Srinivasan, Hiroyuki Izumi
    • Organizer
      Workshop on Neurocomputing.
    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] A neural network having fewer inner constants to be trained and Bayesian decision2007

    • Author(s)
      Yoshifusa Ito, Cidambi Srinivasan, Hiroyuki Izumi
    • Organizer
      International Joint Conference on Neural Networks.
    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] Learning of Bayesian discriminant functions by $a$ layered neural network2007

    • Author(s)
      Yoshifusa Ito, Cidambi Srinivasan, Hiroyuki Izumi
    • Organizer
      International Conference on Neural Informaiton Processing.
    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] Discriminant analysis by a neural network with Mahalanobis distance2006

    • Author(s)
      Yoshifusa Ito, Cidambi Srinivasan, Hiroyuki Izumi
    • Organizer
      International Conference on Artificial Neural Networks
    • Place of Presentation
      Athens
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] 神経回路網によるマハラノビス判別関数の近似と学習2006

    • Author(s)
      伊藤 嘉房、C.スリニヴァサン、泉 寛幸
    • Organizer
      日本神経回路学会
    • Place of Presentation
      名古屋
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] 神経回路網によるベイズ判別関数とマハラノビス判別関数の近似2006

    • Author(s)
      伊藤 嘉房、C.スリニヴァサン、泉 寛幸
    • Organizer
      情報学ワークショップ
    • Place of Presentation
      愛知県長久手町
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] Approximation of Mahalanobis discriminant functions by neural networks and learning2006

    • Author(s)
      Yoshifusa Ito, Cidambi Srinivasan, Hiroyuki Izumi
    • Organizer
      Annual Conference of Japanese Neural Network Society
    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] Approximation of Bayes discriminant dunction and Mahalanobis discriminant function by neural networks2006

    • Author(s)
      Yoshifusa Ito, Cidambi Srinivasan, Hiroyuki Izumi
    • Organizer
      Workshop on Informatics
    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] Bayesian learning of neural networks adapted to changes of prior probabilities2005

    • Author(s)
      Yoshifusa Ito, Cidambi Srinivasan, Hiroyuki Izumi
    • Organizer
      International Conference on Artificial Neural Networks
    • Place of Presentation
      Warsaw
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary

URL: 

Published: 2005-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi