• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

motivic cohomology and classifying spaces

Research Project

Project/Area Number 17540007
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionIbaraki University

Principal Investigator

YAGITA Nobuaki  Ibaraki University, College of Education, professor (20130768)

Co-Investigator(Kenkyū-buntansha) OKAYASU Takashi  Ibaraki University, College of Education, Associate professor (00191958)
KUDOU Kenji  Ibaraki University, College of Education, Lecturer (00114017)
KANEDA Massaharu  Osaka City University, Faculty of Science, professor (60204575)
TEZUKA Michishige  Rykyus University, Faculty of Science, professor (20197784)
Project Period (FY) 2005 – 2007
Project Status Completed (Fiscal Year 2007)
Budget Amount *help
¥2,540,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥240,000)
Fiscal Year 2007: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2006: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 2005: ¥800,000 (Direct Cost: ¥800,000)
Keywordsmotvic cohomology / classifying space / BP-theory / motivic cohomology / algebraic cobordism / Pfister quadric / コンプレックスコボルディズム / 代数的コボルディズム
Research Abstract

A Suslin and V. Voevodsky constructed and developed the motivic cohomology theory H^{*, *''} (X; Z/p) for algebraic sets X over the base field k. This theory is the counter part in algebraic geometry of the usual mod p singular cohomology in algebraic topology. Let ch (k)=0 and fix an embedding that k is subset C. As the counter part of the complex cobordism theory MU^* (X), Voevodsky defined the algebraic cobordism theory MGL^{*, *''} (X) and used it in the first proof of the Milnor Conjecture. Given a nonzero symbol a in K_{n+1}^M (k)/p, the norm variety V_a is a variety such that a=0 in K_{n+1}^M (k (V_a))/p and V_a c=v_n. Here v_n is the 2 (p^n-1) complex manifold generating the coefficient ring of the BP-theory in algebraic topology. In these papers we write down the properties of ABP^{*, *''} (X) which is the algebraic counter part of BP-theory. For example we give a construction of the Atiyah-Hirzebruch spectral sequence for ABP^{*, *} (X; \bZ/p); its existence (of$MGL$-version) was announced by Hopkins and Morel more that several years before, however any proof (or even statement), does not appear yet. We study the cohomology operations, products and Gysin maps explicitly in $ABP^{*, *''}$-theory.

Report

(4 results)
  • 2007 Annual Research Report   Final Research Report Summary
  • 2006 Annual Research Report
  • 2005 Annual Research Report
  • Research Products

    (15 results)

All 2007 2006 2005 Other

All Journal Article (14 results) (of which Peer Reviewed: 5 results) Remarks (1 results)

  • [Journal Article] Algebraic cobordism of a Pfister quadric2007

    • Author(s)
      A.Vishik, N.Yagita
    • Journal Title

      J.London Math. .Soc. 76

      Pages: 586-604

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] Algebraic cobordism of a Pfister form2007

    • Author(s)
      A. Vishik and N. Yagita
    • Journal Title

      J. London Math. Soc 76

      Pages: 586-604

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] Algebraic cobordism of a Pfister quadric2007

    • Author(s)
      A. Vishik and N. Yagita
    • Journal Title

      J. London Math.Soc. 76

      Pages: 586-604

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Equivariant localization of D-module variety of symplectic group of degree 4.2007

    • Author(s)
      A. Jianchen and M. Kaneda
    • Journal Title

      J. Algebra 309

      Pages: 236-281

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On localization of D-modules (Representation of Algebraic groups and Lie algebras)2006

    • Author(s)
      Y.Hashimoto, M.kaneda, D.Rumjnin
    • Journal Title

      Contempt-Math. Soc. 413

      Pages: 43-62

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Applications of Atiyah-Hirzebruch spectral sequences of motivic cobordism.2005

    • Author(s)
      N.Yagita
    • Journal Title

      Proc. London Math. Soc. 90

      Pages: 783-816

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] Algebraic cobordism of simply connected Lie groups2005

    • Author(s)
      N.Yagita
    • Journal Title

      Proc. Camb. Phill. Soc. 139

      Pages: 243-260

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] Algebraic cobordism of compact Lie groups2005

    • Author(s)
      N. Yagita
    • Journal Title

      J. Proc Camb. Soc 139

      Pages: 243-260

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] Applications of Atiyah-Hirzebruch spectral sequences2005

    • Author(s)
      N. Yagita
    • Journal Title

      Proc. London Math. Soc 90

      Pages: 783-816

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] Algebraic cobordism of simply connected Lie groups2005

    • Author(s)
      N.Yagita
    • Journal Title

      Math.Proc.Cambridge Philos.Soc 139

      Pages: 243-260

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Applications of Atiyah-Hizebruch spectral sequences for motivic cobordism2005

    • Author(s)
      N.Yagita
    • Journal Title

      Proc.London Math.Soc. 90

      Pages: 783-816

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Integral and BP eohomologies of extraspecial p-group for odd primes2005

    • Author(s)
      N.Yagita
    • Journal Title

      Kodai J.Math. 28

      Pages: 1-30

    • Related Report
      2005 Annual Research Report
  • [Journal Article] A gap theorem for complete for-dimensional manifolds with ΔW_t=02005

    • Author(s)
      T.Okayasu
    • Journal Title

      Tsukuba J.Math. 29

      Pages: 539-542

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Cobomology of the modulispace of SO(n)-instants with instant number 12005

    • Author(s)
      Y.Kamiyama, M.Tezuka, A.Kono
    • Journal Title

      Topology Appl. 146・147

      Pages: 471-481

    • Related Report
      2005 Annual Research Report
  • [Remarks] 茨城大学研究者情報総覧

    • URL

      http://info.ibaraki.ac.jp/scripts/websearch/index.htm

    • Related Report
      2007 Annual Research Report

URL: 

Published: 2005-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi