• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Arithmetic of cohomological automorphic representations of orthogonal groups and theta series for indefinite quadratic forms

Research Project

Project/Area Number 17540038
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionKeio University

Principal Investigator

MIYAZAKI Takuya  Keio University, Faculty of Science and Technology, Associate Professor (10301409)

Co-Investigator(Kenkyū-buntansha) ODA Yoshiaki  Keio University, Faculty of Science and Technology, Assistant Professor (90325043)
TANAKA Takaaki  Keio University, Faculty of Science and Technology, Research Associate (60306850)
HACHIMORI Yoshitaka  Tokyo University of Science, Faculty of Science and Technology, Assistant Professor (50433743)
深谷 太香子  慶應義塾大学, 商学部, 講師 (20365464)
Project Period (FY) 2005 – 2007
Project Status Completed (Fiscal Year 2007)
Budget Amount *help
¥3,600,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥300,000)
Fiscal Year 2007: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2006: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2005: ¥1,300,000 (Direct Cost: ¥1,300,000)
KeywordsDegenerate principal series / Eisenstein seeries / zonal polynomial / confluent hypergeometric function / Mellin transform / Rankin-Selberg / Ge enbauer多項式 / 一般型メリン変換 / Rankin-Selber / 斉藤・黒川保型形式 / 実解析的保型形式 / 正規化メリン変換 / 半整数重さ / 留数形式 / 実解析的Siegel保型形式 / 実解析的Eisenstein級数 / Zuckerman導来函手加群 / 合流型超幾何函数 / 退化Whittaker模型 / Maassリフティング / Koecher-Maass級数 / Rankin-Selberg L函数
Research Abstract

We construct a kind of real analytic Siegel-Eisenstein series which associate to certain nontempered derived functor module of Sp (2n, R). A close study of its Fourier expansion gives us that the nontrivial Fourier coefficients are supported only for “indefinite" character of the Siegel unipotent subgroup. One can understand this fact to be related to a substancial invariant of the derived functor module, namely, the wave front set of its distribution character.
We also give explicit formula of each Fourier coefficient, which enable us to compute its variously twisted Mellin transform, which give ar generalization of the works of Maass to a special real analytic automorphic representation. As a result we obtain a formula of it written by a Rankin-Selberg type Dirichlet series, where the coefficients include geodesic integrals of Maass wave forms. These study will be applied to construct a nontempered cohomological Saito-Kurokawa representation of Sp (2,A).

Report

(4 results)
  • 2007 Annual Research Report   Final Research Report Summary
  • 2006 Annual Research Report
  • 2005 Annual Research Report
  • Research Products

    (12 results)

All 2008 2007 2006 2005

All Journal Article (7 results) (of which Peer Reviewed: 1 results) Presentation (5 results)

  • [Journal Article] Twisted Mellin transforms of a real analytic residue of Siegel-Eisenstein series of degree 22008

    • Author(s)
      Y. Hasegawa, T. Miyazaki
    • Journal Title

      International Journal of Mathematics, accepted for publication (未定)(掲載確定)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] Twisted Mellin transforms of a real analytic residue of Siegel-Eisenstein series of degree 22008

    • Author(s)
      Y. Hasegawa, T. Miyazaki
    • Journal Title

      International Journal of Mathematics Accepted for publication

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] Mellin transform of a residue of Siegel-Eisenstein series2007

    • Author(s)
      長谷川泰子・宮崎琢也
    • Journal Title

      日本数学会2007年度年会 代数分科会講演アブストラクト

      Pages: 106-107

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Confluent hypergeometric functions for reducible principal series2006

    • Author(s)
      宮崎琢也
    • Journal Title

      数理解析研究所講究録 1467

      Pages: 62-70

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] Confluent hypergeometric functions for reducible principal series2006

    • Author(s)
      T. Miyazaki
    • Journal Title

      RMS Koukyuuroku 1467

      Pages: 62-70

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] Confluent hypergeometric functions for reducible degenerate principal series2006

    • Author(s)
      Takuya Miyazaki
    • Journal Title

      京都大学数理解析研究所講究録 (掲載予定)

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Algebraic independence of the values of power series, Lambert series, and infinite products generated by linear recurrences2005

    • Author(s)
      Taka-aki Tanaka
    • Journal Title

      Osaka Journal of Mathematics 42・2

      Pages: 487-497

    • NAID

      120004845247

    • Related Report
      2005 Annual Research Report
  • [Presentation] Mellin transforms of a residue of Siegel-Eisenstein series2007

    • Author(s)
      長谷川泰子, 宮崎琢也
    • Organizer
      日本数学会 代数分科会
    • Place of Presentation
      埼玉大学
    • Year and Date
      2007-03-30
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] Mellin transforms of a residue of Siegel-Eisenstein series2007

    • Author(s)
      Y. Hasegawa, T. Miyazaki
    • Organizer
      Algebra session at the annual meeting of Mathematical Society of Japan
    • Place of Presentation
      Saitama University
    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] 退化主系列表現の構造と帯多項式付のsiege-Eisenstein級数2007

    • Author(s)
      宮崎 琢也
    • Organizer
      大阪大学大学院集中講義
    • Place of Presentation
      大阪大学理学研究科
    • Related Report
      2007 Annual Research Report
  • [Presentation] Confluent hypergeometric functions for reducible degenerate principal series2005

    • Author(s)
      宮崎琢也
    • Organizer
      群の表現と調和解析の広がり
    • Place of Presentation
      京都大学数理解析研究所
    • Year and Date
      2005-07-26
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] Confluent hypergeometric functions for reducible degenerate principal series2005

    • Author(s)
      T. Miyazaki
    • Organizer
      Representation theory of groups and extension of harmonic analysis
    • Place of Presentation
      Kyoto
    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary

URL: 

Published: 2005-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi