• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Geometric structures and submanifolds

Research Project

Project/Area Number 17540078
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionShimane University

Principal Investigator

KIMURA Makoto  Shimane University, Fac. of Sci. and Tech, Professor (30186332)

Co-Investigator(Kenkyū-buntansha) FURUMOCHI Tetsuo  Shimane Univ., Fac. of Sci. and Tech, Professor (40039128)
HATTORI Yasunao  Shimane Univ., Fac. of Sci. and Tech, Professor (20144553)
YOKOI Katsuya  Shimane Univ., Fac. of Sci. and Tech, Professor (90240184)
MAEDA Sadahiro  Saga Uni., Fac. of Sci. and Tech, Professor (40181581)
Project Period (FY) 2005 – 2007
Project Status Completed (Fiscal Year 2007)
Budget Amount *help
¥3,070,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥270,000)
Fiscal Year 2007: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2006: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2005: ¥1,100,000 (Direct Cost: ¥1,100,000)
KeywordsDifferential Geometry / Lagrange submanifolds / Minimal submanifolds / 実超曲面 / Hamilton極小性
Research Abstract

As a joint research with Kaoru Suizu, we obtained fundamental theorem for Lagrange surfaces in the Riemann product of round 2-spheres. Namely, we showed that for minimal Lagrange surfaces in $S^2\times S^2$, Gauss and Codazzi equations are sufficient and necessary condition far the existence of such minimal Lagrange immersions. Also for Lagrange surfaces in $S^2\times S^2$, second fundamental tensor and the angle function, which we introcuced are invariant for congruent.
Next we investigated Lagrange submanifolds in complex projective spaces , which is obtained as a 1-parameter family of totally geodesic, totally real (n-1)-dimensional submanifolds $RP^<{n-1}>$. Such submanifolds axe obtained from curves in the moduli space op $RP^<{n-1}>$ in $CP^n$. For a curve in the moduli space, we showed that the corresponding $n$-dimensional submanifold is Lagrangian if only if the curve is horizon with respect to the natural fibration from the moduli space to $CP^n$. Then we showed that if such a Lagrange submanifold is minimal, then is total geode-sic. More we investigated the condition for which such Lagrange submanifolds to be Hamiltonian minimal.

Report

(4 results)
  • 2007 Annual Research Report   Final Research Report Summary
  • 2006 Annual Research Report
  • 2005 Annual Research Report
  • Research Products

    (22 results)

All 2008 2007 2006 2005 Other

All Journal Article (18 results) (of which Peer Reviewed: 4 results) Presentation (2 results) Remarks (2 results)

  • [Journal Article] Pseudoho holomorphic sectional curvatures of real hypersurfaces in a complex space form2008

    • Author(s)
      J. T. Cho and M. Kimura
    • Journal Title

      Kyushu J. Math. 62

      Pages: 75-87

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] Lagrangian submanifolds with codimension 1 totally geodesic foliation in complex projective spaces,2008

    • Author(s)
      M. Kimura
    • Journal Title

      Kodai Math. J. 31

      Pages: 38-45

    • NAID

      130004687879

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Annual Research Report 2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] Pseudo holomorphic sectional curvatures of real hypersurfaces in a complex space forms2008

    • Author(s)
      Jong, Taek, Cho, Makoto, Kimura
    • Journal Title

      Kyushu J. Math 62

      Pages: 75-87

    • NAID

      110006647917

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] Lagrangian submanifolds with codimension 1 totally geodesic foliation in complex projective spaces2008

    • Author(s)
      Makoto, Kimura
    • Journal Title

      Kodai Math. J 31

      Pages: 38-45

    • NAID

      130004687879

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] Pseudo holomorphic sectional curvatures of real hypersurfaces in a complex space form2008

    • Author(s)
      J. T. Cho and M. Kimura
    • Journal Title

      Kyushu J. Math. 62

      Pages: 75-87

    • NAID

      110006647917

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Fundamental Theorems of Lagrangian surfaces in $S^2\times S^2$2007

    • Author(s)
      M. Kimura and K. Suizu
    • Journal Title

      Osaka Math. J. 44

      Pages: 829-850

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Annual Research Report 2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] Fundamental theorems of Lagrangian surfaces in SS^2\times S^2$2007

    • Author(s)
      Makoto, Kimura, Kaoru, Suizu
    • Journal Title

      Osaka J. Math 44

      Pages: 829-850

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] Liapunov functions and boundedness in difference equations.2006

    • Author(s)
      T.Furumochi, K.Hishitani, T.Tsuchihashi
    • Journal Title

      Dynamics of Continuous, Discrete & Impulsive Systems. Series A. Mathematical Analysis 13B

      Pages: 331-339

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Partitions of spaces by locally compact subspaces2006

    • Author(s)
      V.A.Chatyrko, Y.Hattori, H.Ohta
    • Journal Title

      Houston Journal of Mathematics 32-4

      Pages: 1077-1091

    • Related Report
      2006 Annual Research Report
  • [Journal Article] A useful characterization of some real hypersurfaces in a nonflat complex space form2006

    • Author(s)
      T.Itoh, S.Maeda
    • Journal Title

      Bulletin of the Polish Academy of Sciences. Mathematics 54-2

      Pages: 125-136

    • Related Report
      2006 Annual Research Report
  • [Journal Article] A practical criterion for some submanifolds to be totally geodesic2006

    • Author(s)
      Y.H.Kim, S.Maeda
    • Journal Title

      Monatsh. Math. 149-3

      Pages: 233-242

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Congruence classes of Frenet curves in complex quadrics2005

    • Author(s)
      Makoto Kimura, M.Ortega
    • Journal Title

      Journal of Geometry 83・1-2

      Pages: 121-136

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Totally umbilic hypersurfaces and isoparametric hypersurfaces in space forms2005

    • Author(s)
      Makoto Kimura, S.Maeda
    • Journal Title

      Contemporary aspects of complex analysis, differential geometry and mathematical physics

      Pages: 149-157

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Real hypersurfaces some of whose geodesics are plane curves in nonflat complex space forms2005

    • Author(s)
      A.Adachi, M.Kimura, S.Maeda
    • Journal Title

      Tohoku Math.J. 57・2

      Pages: 223-230

    • NAID

      110001232644

    • Related Report
      2005 Annual Research Report
  • [Journal Article] A class of real hypersurfaces in complex projective space2005

    • Author(s)
      Makoto Kimura
    • Journal Title

      Proceedings of the Ninth International Workshop on Differential Geometry

      Pages: 61-67

    • Related Report
      2005 Annual Research Report
  • [Journal Article] A generalization of Cartan hypersurfaces2005

    • Author(s)
      Makoto Kimura
    • Journal Title

      Proceedings of the Ninth International Workshop on Differential Geometry

      Pages: 51-59

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Fundamental Theorems of Lagrangian surfaces in $S^2times S^2$

    • Author(s)
      M.Kimura, K.Suizu
    • Journal Title

      Osaka Math. J. 印刷中

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Pseudo holomorphic sectional curvatures of real hypersurfaces in a complex space form

    • Author(s)
      J.T.Cho, M.Kimura
    • Journal Title

      Kyusyu J. Math. 印刷中

    • NAID

      110006647917

    • Related Report
      2006 Annual Research Report
  • [Presentation] Lagrangian submanifolds with totally geodesic foliation in CP^n2007

    • Author(s)
      木村真琴
    • Organizer
      北大幾何学コロキウム
    • Place of Presentation
      北海道大学
    • Year and Date
      2007-11-09
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Annual Research Report 2007 Final Research Report Summary
  • [Presentation] Lagrangian submanifolds with totally geodesic foliation in complex projective spaces2007

    • Author(s)
      Makoto,Kimura
    • Organizer
      Hokudai Geometry Colloquim
    • Place of Presentation
      Hokkaido Univ
    • Year and Date
      2007-11-09
    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Remarks] 「研究成果報告書概要(和文)」より

    • URL

      http://susc3002.riko.shimane-u.ac.jp/

    • Related Report
      2007 Final Research Report Summary
  • [Remarks]

    • URL

      http://susc3002.riko.shimane-u.ac.jp/

    • Related Report
      2007 Annual Research Report

URL: 

Published: 2005-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi