• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on submanfolds of homogeneous spaces from the view of orbital Grassmann geometry

Research Project

Project/Area Number 17540081
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionYamaguchi University

Principal Investigator

NAITOH Hiroo  Yamaguchi University, Graduate School of Science and Engineering, Professor (10127772)

Co-Investigator(Kenkyū-buntansha) NAKAUCHI Nobumitsu  Yamaguchi University, Graduate School of Science and Engineering, Associate Professor (50180237)
ANDO Yoshifumi  Yamaguchi University, Graduate School of Science and Engineering, Professor (80001840)
KOMIYA Katuhiro  Yamaguchi University, Graduate School of Science and Engineering, Professor (00034744)
KIUCHII Isao  Yamaguchi University, Graduate School of Science and Engineering, Associate Professor (30271076)
WATANABE Tadashi  Yamaguchi University, Faculty of Education, Professor (10107724)
Project Period (FY) 2005 – 2007
Project Status Completed (Fiscal Year 2007)
Budget Amount *help
¥3,070,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥270,000)
Fiscal Year 2007: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2006: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2005: ¥1,000,000 (Direct Cost: ¥1,000,000)
KeywordsGrassmann geometry / homogeneous space / submanifold / Liegroup / left invariant metric / surface / unimndnlar Lie noun / リー郡
Research Abstract

This study is on the Grassmann geometry on the Riemannian homogeneous spaces. Our aim is to consider the classification problem of extrinsic homogeneous submanifolds of Riemannian symmetric spaces. For this, in this study, we examine the case where a Riemannian homogeneous space is a 3-dimensional unimodular Lie group with a left invariant metric. The 3-dimensional unimodular Lie groups are classified into six ones; the 3-dimensional vector group, the 3-dimensional Heisenberg group, the groups of rigid motions of the Eucliden 2-plane and the Minkowski 2-plane, the special unitary group SU (2), and the special linear group SL (2,R). Also, for each of them the geometric properties such as the curvatures, the isometry group, and m on, can be expressed concretely. In this study we in particular consider the Grassmann geometry on the spaces SU (2) and SL (2,R), while the cases of the Heisenberg group and the groups of rigid motions of the Eucliden 2-plane and the Minkowski 2-plane are clarify by H Naitoh, J. Inoguchi, and K Kuwabara. The obtained main results are the following.;
for both the spaces SU (2) and SL (2,R),
(1) the classification for all the orbits associated with Grassmann geometries on their spaces
(2) the determination of the orbits whose Grassmann geometries are nonempty
(3) the analysis on the surface theory for nonempty Grassmann geometries, in particular, (3-1) the settlement of the existence problem of totally geodesic surfaces, (3-2) the settlement of the existence problem of flat surfaces, (3-3) the settlement of the existence problem of minimal surface, (3-4) the settlement of the existence problem of constant mean curvature surfaces
(4) the overview of Grassmann geometry on all the 3-dimensional unimodular Lie groups with left invariant metrics.
These results will be appeared in forthcoming papers titled by "Grassmann geometry on the 3-dimensional unimodular Lie groups I, II".

Report

(4 results)
  • 2007 Annual Research Report   Final Research Report Summary
  • 2006 Annual Research Report
  • 2005 Annual Research Report
  • Research Products

    (15 results)

All 2008 2007 2006 2005 Other

All Journal Article (13 results) (of which Peer Reviewed: 4 results) Presentation (2 results)

  • [Journal Article] Classification of symmetric submanifolds of symmetric spaces2007

    • Author(s)
      Kazumi Tsukada
    • Journal Title

      Sugaku Expositions (American Math. Soc.) 20

      Pages: 149-168

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] Classification of symmetric submanifolds of symmetric spaces2007

    • Author(s)
      Kazumi, Tsukada, Hiroo, Naitoh
    • Journal Title

      Sugaku Expositions(ed. Amer. Math. Soc.) 20

      Pages: 149-168

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] Classification of symmetric submanifolds of symmetric spaces2007

    • Author(s)
      Kazumi Tsukada
    • Journal Title

      Sugaku Expositions(American Math. Soc.) 20

      Pages: 149-168

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Bounds for double zeta-functions2006

    • Author(s)
      Isao Kiuchi
    • Journal Title

      Annali della Scuola Normale Superiore di Pisa, Classe di Scienze (5) 5・4

      Pages: 445-464

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Nonexistence of homotopy equivalences which are C^{infty} stable or of finite codimension2006

    • Author(s)
      Yoshifumi Ando
    • Journal Title

      Topology and its Applications 153

      Pages: 2962-2970

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Symmetric submanifolds associated with the irreducible symmetric R-spaces2005

    • Author(s)
      Jurgen Berndt
    • Journal Title

      Mathematische Annalen 332

      Pages: 721-737

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] Grassmann geometry on the $3$-dimensional Heisenberg group2005

    • Author(s)
      Jun-ichi Inoguchi
    • Journal Title

      Hokkaido Mathematical Journal 34

      Pages: 375-391

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] Symmetric submanifolds associated with the irreducible symmetric It-spaces2005

    • Author(s)
      J. Berndt, J.H. Eschenburg, Hiroo, Naitoh, Kazumi, Tsukada
    • Journal Title

      Mathematische Annalen 332

      Pages: 721-737

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] Grassmann geometry on the 3-dimensional Heisenberg group2005

    • Author(s)
      Jun-ichi, Inoguchi, Kenji, Kuwabara, Hiroo, Naitoh
    • Journal Title

      Hokkaido Mathematical Journal 34-2

      Pages: 375-391

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] Symmetric submanifolds associated with irreducible symmetric R-spaces2005

    • Author(s)
      Jurgen Berndt
    • Journal Title

      Mathematische Annalen 332

      Pages: 721-737

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Grassmann geometry on the 3-dimensional Heisenberg group2005

    • Author(s)
      Jun-ichi Inoguchi
    • Journal Title

      Hokkaido Mathematical Journal 34・2

      Pages: 375-391

    • Related Report
      2005 Annual Research Report
  • [Journal Article] The divisibility in the cut-and-paste group of G-manifolds and fibring over the circle within a cobordism class2005

    • Author(s)
      Katsuhiro Komiya
    • Journal Title

      Osaka Journal of Mathematics 42

      Pages: 233-241

    • NAID

      120004844105

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Nonexistence of homotopy equivalence which are C^{infty} stable or finite codimension

    • Author(s)
      Yoshifumi Ando
    • Journal Title

      Topology and its Application (To appear)

    • Related Report
      2005 Annual Research Report
  • [Presentation] 3次元ユニモジュラーリー群上のグラスマン幾何2008

    • Author(s)
      内藤 博夫
    • Organizer
      研究集会「多様体上の幾何構造とその応用」
    • Place of Presentation
      名古屋市(名城大学)
    • Year and Date
      2008-03-06
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Annual Research Report 2007 Final Research Report Summary
  • [Presentation] Grassmann geometry on the 3-dimensional unimodular Lie Groups2008

    • Author(s)
      Hiroo, Naitoh
    • Organizer
      Conference " Geometric structures on manifolds and its applications"
    • Place of Presentation
      Mejo University (Nagoya)
    • Year and Date
      2008-03-06
    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary

URL: 

Published: 2005-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi