• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on Diffeomorphism Groups of Manifolds with Geometric Structures

Research Project

Project/Area Number 17540098
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionKyoto Sangyo University

Principal Investigator

FUKUI Kazuhiko  Kyoto Sangyo University, Faculty of Science, Professor (30065883)

Project Period (FY) 2005 – 2007
Project Status Completed (Fiscal Year 2007)
Budget Amount *help
¥3,300,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2007: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2006: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2005: ¥1,000,000 (Direct Cost: ¥1,000,000)
Keywordsdiffeomorphism group / geometric structure / homology of a group / perfect group / finite grouo action / orbifold / foliation with Morse singularity / commutator length / モース型特異点をもつ葉層 / 同相群の1次元ホモロジー / 葉層構造 / レフシェッツ葉層
Research Abstract

I researched about an algebraic and topological structure of the diffeomorphism group of a manifold with a geometric structure and its subgroup from the following four viewpoints.
1. Study on a topological property of Lipschitz mappings and an algebraic structure of the group of Lipschitz homeomorphisms. We proved that a so-called Inverse Function Theorem holds in the Lipschitz category. We considered the complex n space C^n with canonical U(n)-action and proved that the first homology of the identity component of the group of equivariant Lipschitz homeomorphisms of On with compact support under the compact open topology does not vanish and admits continuous moduli
2. Study on the group of equivariant diffeomorphisms. We considered the real n space R^n with finite group action and determined that the first homology of the identity component of the group of equivariant diffeomorphisms of R^n with compact support. As a corollary, we can determine the first homology of the groups of automorphisms of orbifolds, manifolds with compact Hausdorff foliations and 3-manifolds with locally free S^1 action.
3. Study on the group of foliation preserving diffeomorphisms of foliated manifolds with singularity. We considered foliated manifolds with singularities of Morse type and determined the first homology of the identity component of the group of foliation preserving diffeomorphisms of the foliated manifolds.
4. Study on the group of diffeomorphisms preserving a submanifold and the commutator length. We considered a manifold and its submanifold and proved that the identity component of the group of diffeomorphisms of the manifold preserving the submanifold is perfect if the dimension of the submanifold is greater than 0. Furthermore we discussed the commutator length of diffeomorphisms near the identity.

Report

(4 results)
  • 2007 Annual Research Report   Final Research Report Summary
  • 2006 Annual Research Report
  • 2005 Annual Research Report

Research Products

(23 results)

All 2008 2007 2006 2005 Other

All Journal Article (15 results) (of which Peer Reviewed: 7 results) Presentation (8 results)

  • [Journal Article] The first homology of the group of equivariant diffeomorphisms and its applications2008

    • Author(s)
      阿部 孝順-福井 和彦
    • Journal Title

      J.of Topology. 1(2)

      Pages: 461-476

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] The first homology of the groups of equivariant diffeomorphisms and its applications2008

    • Author(s)
      K. Abe, K. Fukui
    • Journal Title

      J. of Topology 1(2)

      Pages: 461-476

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] On the first homology of the group of equivariant Lipschitz homeomorphisms2006

    • Author(s)
      阿部 孝順-福井 和彦-三浦 毅
    • Journal Title

      J.Math.Soc.Japan 58-1

      Pages: 1-15

    • NAID

      10017178257

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] On the first homology of the group of equivariant Lipschitz homeomorphisms2006

    • Author(s)
      K. Abe, K. Fukui, T. Miura
    • Journal Title

      J. Math. Soc. Japan 58-1

      Pages: 1-15

    • NAID

      10017178257

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] On the first homology of the group of equivariant Lipschitz homeomorphisms2006

    • Author(s)
      阿部 孝順, 福井 和彦, 三浦 毅
    • Journal Title

      J. Math. Soc. Japan 58-1

      Pages: 1-15

    • NAID

      10017178257

    • Related Report
      2006 Annual Research Report
  • [Journal Article] On the first homology of the group of equivariant Lipschitz homeomorphisms2006

    • Author(s)
      阿部 孝順, 福井 和彦, 三浦 毅
    • Journal Title

      J.Math.Soc.Japan 58-1

      Pages: 1-15

    • NAID

      10017178257

    • Related Report
      2005 Annual Research Report
  • [Journal Article] A topological property of Lipschitz mappings2005

    • Author(s)
      福井 和彦-中村 太郎
    • Journal Title

      Topology and its Applications 148

      Pages: 143-152

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] On the first homology of automorphism groups of manifolds with geometric structures2005

    • Author(s)
      阿部 孝順-福井 和彦
    • Journal Title

      Central European Science J. 3(3)

      Pages: 516-528

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] A topological property of Lipschitz mappings2005

    • Author(s)
      K. Fukui, T. Nakamura
    • Journal Title

      Topology and its Appl. 148

      Pages: 143-152

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] On the first homology of automorphism groups of manifolds with geometric structures2005

    • Author(s)
      K. Abe, K. Fukui
    • Journal Title

      CESJ 3(3)

      Pages: 516-528

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] A topological property of Lipschitz mappings2005

    • Author(s)
      福井 和彦, 中村 太郎
    • Journal Title

      Topology and its Applications 148

      Pages: 143-152

    • Related Report
      2005 Annual Research Report
  • [Journal Article] On the first homology of automorphism groups of manifolds with geometric structures2005

    • Author(s)
      阿部 孝順, 福井 和彦
    • Journal Title

      Central European Science J. 3(3)

      Pages: 516-528

    • Related Report
      2005 Annual Research Report
  • [Journal Article] On the first homology of the groups of foliation preserving diffeomorphisms for foliations with singularities of Morse type

    • Author(s)
      福井 和彦
    • Journal Title

      Publ.RIMS Kyoto Univ. (近刊)

    • NAID

      110006978602

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] The first homology of the group of equivariant diffeomorphisms and its applications

    • Author(s)
      阿部 孝順-福井 和彦
    • Journal Title

      Journal of Topology (近刊)

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On the first homology of the groups of foliation preserving diffeomorphisms for foliations with singularities of Morse type

    • Author(s)
      福井 和彦
    • Journal Title

      Pub1. RIMS Kyoto Univ. (近刊)

    • NAID

      110006978602

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Presentation] 微分同相写像の交換子の長さについて2007

    • Author(s)
      福井 和彦
    • Organizer
      研究集会「海山微分トポロジー」
    • Place of Presentation
      三重県紀北町
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] 特異点をもつ葉層を保つ微分同相群について2006

    • Author(s)
      福井 和彦
    • Organizer
      研究集会「海山微分トポロジー」
    • Place of Presentation
      三重県紀北町
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] 複素モース特異点をもつ葉層を保存する微分同相群2006

    • Author(s)
      福井 和彦
    • Organizer
      研究集会「葉層構造と幾何学」
    • Place of Presentation
      東京大学玉原国際セミナーハウス
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] 部分多様体を保つ微分同相写像のなす群について2006

    • Author(s)
      福井 和彦
    • Organizer
      「同相群とその周辺」研究集会
    • Place of Presentation
      京都工芸繊維大学
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] The first homology of the group of equivariant diffeomorphisms and its applications2005

    • Author(s)
      福井 和彦
    • Organizer
      Foliations 2005
    • Place of Presentation
      Lodz(Poland)
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] 葉層を保つ微分同相群の1次元ホモロジーについて2005

    • Author(s)
      福井 和彦
    • Organizer
      研究集会「葉層構造とその周辺」
    • Place of Presentation
      東京大学玉原国際セミナーハウス
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] 非コンパクト多様体の同相群について2005

    • Author(s)
      福井 和彦
    • Organizer
      研究集会「海山微分トポロジー」
    • Place of Presentation
      三重県紀北町
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] The first homology of the group of equivariant diffeomorphisms and its applications2005

    • Author(s)
      K. Fukui
    • Organizer
      Foliatios 2005
    • Place of Presentation
      Lodz(Poland)
    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary

URL: 

Published: 2005-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi