• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on the clustering algorithms in functional data analysis

Research Project

Project/Area Number 17540126
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionKagoshima University

Principal Investigator

INADA Koichi  Kagoshima University, Faculty of Science, Professor (20018899)

Co-Investigator(Kenkyū-buntansha) KONDO Masao  Kagoshima University, Faculty of Science, Professor (70117505)
YADOHISA Hiroshi  Doshisha University, Faculty of Culture and Information Science, Associate Professor (50244223)
大和 元  鹿児島大学, 理学部, 教授 (90041227)
Project Period (FY) 2005 – 2007
Project Status Completed (Fiscal Year 2007)
Budget Amount *help
¥3,570,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥270,000)
Fiscal Year 2007: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2006: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2005: ¥1,500,000 (Direct Cost: ¥1,500,000)
Keywordsfunctional data analysis / Cluster analysis / k-means method / fuzzy k-means method
Research Abstract

The functional data analysis is a technique proposed by Ramsay (1982)as an analytical method when the essence of the object data is not a discrete data but a function. Basic concepts of this analysis are in the expression of the data observed as a discrete data according to the function, and the effective extraction of information from this function set. These features are not in the data analysis of the past. It is a natural idea that adopts the multivariate analysis method for existing discrete data for the function data as an analytical technique when data is a function, Ramsay and Silverman (1997)enhances the regression analysis, the principal component analysis, the canonical correlation analysis, and the linear model, etc. for the functional data, Tokushige, Inada and Yadohisa (2003)gave the non-similarity between the functional data as a real number, and it is one flow of the research. We have been researching enhancing the crisp k-means method and the fuzzy k-means method that is the technique of non-hierarchical cluster analysis for the function data. the k-means method can be very useful one of the techniques used most in the cluster analysis, and to enhance this, and expect use in various fields. This study results announced with "S. Tokushige, and H. Yadohisa and K. Inada, Crisp and fuzzy k-means clustering algorithms for multivariate functional data,Computational Statistics, 22, 1, (2007),1-16."

Report

(4 results)
  • 2007 Annual Research Report   Final Research Report Summary
  • 2006 Annual Research Report
  • 2005 Annual Research Report
  • Research Products

    (15 results)

All 2007 2006

All Journal Article (6 results) (of which Peer Reviewed: 4 results) Presentation (9 results)

  • [Journal Article] Crisp and fuzzy k-means clustering algorithms for multivariate Functional data2007

    • Author(s)
      S.Tokushige, H.Yadohisa and K.Inada
    • Journal Title

      Computational Statistics 22

      Pages: 1-16

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] Asymmetric Agglomerative Hierarchical Clustering Algorithms and Their Evaluations2007

    • Author(s)
      A.Takeuchi, T.Saito and H.Yadohisa
    • Journal Title

      Journal of Classification 24

      Pages: 123-143

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] Crisp and fuzzy k-means clustering algorithms for multivariate Functional data2007

    • Author(s)
      S. Tokushige, H. Yadohisa, K. Inada
    • Journal Title

      Computational Statistics 22

      Pages: 1-16

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] Asymmetric Agglomerative Hierarchical Clustering Algorithms and Their Evaluations2007

    • Author(s)
      A. Takeuchi, T. Saito, H. Yadohisa
    • Journal Title

      Journal of Classification 24(1)

      Pages: 123-143

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] Crisp and fuzzy k-means clustering algorithms for multivariate Functional data2007

    • Author(s)
      S. Tokushige, H. Yadohisa and K. Inada
    • Journal Title

      Computational Statistics 22

      Pages: 1-16

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Asymmetric Agglomerative Hierarchical Clustering Algorithms and Their Evaluations2007

    • Author(s)
      A. Takeuchi, T. Saito and H. Yadohisa
    • Journal Title

      Journal of Classification 24

      Pages: 123-143

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Presentation] Numerical experiment for asymmetric AHCA2007

    • Author(s)
      Akinobu Takeuchi
    • Organizer
      The 72nd Annual Meeting of the Psychometric Society
    • Place of Presentation
      Tokyo
    • Year and Date
      2007-07-09
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] 非対称可変分類法のシミュレーションによる評価2007

    • Author(s)
      竹内 光悦
    • Organizer
      日本計算機統計学会
    • Place of Presentation
      岡山県倉敷市
    • Year and Date
      2007-05-30
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] Evaluation for asymmetric AHCA2007

    • Author(s)
      Akinobu, Takeuchi
    • Organizer
      Japanese Society of Computational Statistics
    • Place of Presentation
      Kurasiki City
    • Year and Date
      2007-05-30
    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] 非対称可変分類法のシミュレーションによる評価2007

    • Author(s)
      竹内光悦, 宿久洋, 齋藤堯幸
    • Organizer
      日本計算機統計学会
    • Place of Presentation
      岡山県倉敷市倉敷市芸文館
    • Year and Date
      2007-05-30
    • Related Report
      2007 Annual Research Report
  • [Presentation] Simulation study of asymmetric k-medoids clustering algorithms for dissimilarity data2006

    • Author(s)
      Akinobu Takeuchi
    • Organizer
      10th Jubilee Conference of the International Federation of Classification Societies
    • Place of Presentation
      Ljubljana, Slovenia
    • Year and Date
      2006-07-25
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] 非階層的クラスター化法を用いた非対称データの分類2006

    • Author(s)
      竹内 光悦
    • Organizer
      日本計算機統計学会
    • Place of Presentation
      同志社大学,京田辺市
    • Year and Date
      2006-05-20
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] Classification of asymmetric data with non-hierarchical clustering method2006

    • Author(s)
      Akinobu, Takeuchi
    • Organizer
      Japanese Society of Computational Statistics
    • Place of Presentation
      Kyotanabe City
    • Year and Date
      2006-05-20
    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] k-means法を用いた多変量関数データのクラスタリング2006

    • Author(s)
      徳重 修一
    • Organizer
      統計数理研究所プロジェクト研究による研究会
    • Place of Presentation
      統計数理研究所, 東京
    • Year and Date
      2006-03-28
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] k-means clustering algorithms for multivariate functional data2006

    • Author(s)
      Shuichi, Tokusige
    • Organizer
      Research projects in the Insutitute of Statistical Mathematics
    • Place of Presentation
      Tokyo
    • Year and Date
      2006-03-28
    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary

URL: 

Published: 2005-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi