• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Semiclassical Analysis of Schroedinger equations

Research Project

Project/Area Number 17540141
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionUniversity of Hyogo

Principal Investigator

FUJIIE Setsuro  University of Hyogo, Graduate School of Material Science, Associate Professor, 大学院物質理学研究科, 助教授 (00238536)

Co-Investigator(Kenkyū-buntansha) CHIHARA Hiroyuki  Tohoku University, Graduate School of Science, Associate Professor, 大学院理学研究科, 助教授 (70273068)
DOI Shin-ichi  Osaka University, Graduate School of Science, Professor, 大学院理学研究科, 教授 (00243006)
Project Period (FY) 2005 – 2006
Project Status Completed (Fiscal Year 2006)
Budget Amount *help
¥3,300,000 (Direct Cost: ¥3,300,000)
Fiscal Year 2006: ¥1,600,000 (Direct Cost: ¥1,600,000)
Fiscal Year 2005: ¥1,700,000 (Direct Cost: ¥1,700,000)
Keywordssemi-classical analysis / WKB method / microlocal analysis / resonance / Schroedinger equation / hyperbolic fixed point / almost analytic extension / propagation of siugularity / 錐状交差ポテンシャル
Research Abstract

The main researches during this period are the fallowings.
First, in collaboration with J.-F. Bony, T. Ramond and M. Zerzeri, I considered a Hamiltonian with a hyperbolic fixed point and the corresponding incoming and outgoing stable manifolds. We showed, under a generic assumption, that the microlocal solution of the corresponding Schroedinger equation on the outgoing stable manifold (output data) is uniquely determined by that on the incoming stable manifold (input data). Moreover, we succeeded in describing the output data in terms of the input data as Fourier integral operator, whose phase and amplitude are explicitely given by geometrical quantities. These results are written in the preprint "Microlocal kernel of pseudodifferential operators at a hyperbolic fixed point.
Second, in collaboration with A. L. Benbernou and A. Martinez, I considered the asymptotic expansion of the width of shape resonances created by a "well in an island". About 20 years ago, Helffer and Sjostrand showed for analytic potentials that it has a classical expansion with an exponentially small prefactor whose rate is given by the Agmon distance from the well to the sea. We conjectured the same result for only smooth potentials.

Report

(3 results)
  • 2006 Annual Research Report   Final Research Report Summary
  • 2005 Annual Research Report
  • Research Products

    (13 results)

All 2006 2005 Other

All Journal Article (13 results)

  • [Journal Article] Resonances created by a conical intersection2006

    • Author(s)
      S.Fujiie
    • Journal Title

      京都大学数理解析研究書講究録 1493

      Pages: 212-219

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] An exact WKB method for 2×2 systems and applications2006

    • Author(s)
      S.Fujiie
    • Journal Title

      京都大学数理解析研究書講究録 1510

      Pages: 1-7

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Resonances created by a conical intersection2006

    • Author(s)
      S.Fujiie
    • Journal Title

      RIMS Kokyuroku 1493

      Pages: 212-219

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] An exact WKB method for 2x2 systems and applications2006

    • Author(s)
      S.Fujiie
    • Journal Title

      RIMS Kokyuroku 1510

      Pages: 1-7

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Exact WKB solutionsat a regular singular point for 2×2 systems2005

    • Author(s)
      S.Fujiie
    • Journal Title

      京都大学数理解析研究書講究録 1424

      Pages: 118-127

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Smoothness of solutions for Schroedinger equations with unbounded potentials2005

    • Author(s)
      S.Doi
    • Journal Title

      Publ. RIMS 41-1

      Pages: 175-221

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] The initial value problem for a third order dispersive equation on the two dimensional torus2005

    • Author(s)
      H.Chihara
    • Journal Title

      Proc. Amer. Math. Soc. 133

      Pages: 2083-2090

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Exact WKB solutionsat a regular singularpoint for 2×2 systems2005

    • Author(s)
      S.Fujiie
    • Journal Title

      RIMS Kokyuroku 1424

      Pages: 118-127

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] The initial value problem for a third order dispersive equation on the two dimensional torus2005

    • Author(s)
      H.Chihara
    • Journal Title

      Proc. Amer. Math. Soc 133

      Pages: 2083-2090

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary 2005 Annual Research Report
  • [Journal Article] Smoothness of solutions for Schroedinger equations with unbounded potentials2005

    • Author(s)
      S.Doi
    • Journal Title

      Publ. Res. Inst. Math. Sci 41-1

      Pages: 175-221

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Third order semilinear dispersive equations related to deep water waves

    • Author(s)
      H.Chihara
    • Journal Title

      Trans. Amer. Math. Soc. (To appear)

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Resonances created by a conical intersection

    • Author(s)
      S.Fujiie
    • Journal Title

      数理解析研究所講究録 (To appear)

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Third order semilinear dispersive equations related to deep water waves

    • Author(s)
      H.Chihara
    • Journal Title

      Trans. Amer. Math. Soc (To appear)

    • Related Report
      2005 Annual Research Report

URL: 

Published: 2005-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi