• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of Green function of higher order / fractional order differential equations from a viewpoint of a reproducing kernel theory

Research Project

Project/Area Number 17540175
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionTokyo University of Technology

Principal Investigator

TAKEMURA Kazuo  Tokyo University of Technology, Research Assistant, メディア学部, 助手 (60367216)

Co-Investigator(Kenkyū-buntansha) KAMETAKA Yoshinori  Osaka University, Emeritus Professor, 大学院基礎工学研究科, 名誉教授 (00047218)
NAGAI Atsushi  Nihon University, Lecturer, 生産工学部, 講師 (90304039)
Project Period (FY) 2005 – 2006
Project Status Completed (Fiscal Year 2006)
Budget Amount *help
¥2,400,000 (Direct Cost: ¥2,400,000)
Fiscal Year 2006: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2005: ¥1,400,000 (Direct Cost: ¥1,400,000)
KeywordsGreen function / Reproducing kernel / Sobolev inequality / Best constant / Ordinary differential equation
Research Abstract

(2005) We constructed Green functions under various boundary conditions and showed that the Green functions are reproducing kernels of suitable Hilbert spaces. Based on this fact, we succeeded in calculation of the best constant and the best function for Sobolev inequality by examining a diagonal value of Green function in a detailed manner.
We calculated the best constant of a Sobolev inequality corresponding to several boundary value problems including Diriclet type, Neumann type and the periodic type conditions for a string bending problem. If the corresponding eigenvalue problem has a nonpositive eigenvalue, we constitute a generalied Green function by the so-called symmetric orthogonalization method by imposing the solvability and orthogonality condition to the boundary value problem.
(2006) We calculated concretely the best constant of a Sobolev inequality corresponding to boundary value problems for 2M-th order differential operator, which contains clumped type, Diriclet type, Neumann type, a free end, a periodic type condition. In particular, the best constant of Dirichlet, Neumann and periodic boundary condition is found and expressed by means of Bernoulli polynomials and Riemann zeta function. This result give a variational meaning of Riemann zeta function. In the other 2 cases, we calculated the best constant of a Sobolev inequality by examining a diagonal value of Green function.

Report

(3 results)
  • 2006 Annual Research Report   Final Research Report Summary
  • 2005 Annual Research Report
  • Research Products

    (11 results)

All 2007 2006 2005

All Journal Article (11 results)

  • [Journal Article] RIEMANN ZETA FUNCTION, BERNOULLI POLYNOMIALS AND THE BEST CONSTANT OF SOBOLEV INEQUALITY2007

    • Author(s)
      Y.Kametaka, H.Yamagishi, K.Watanabe, A.Nagai, K.Takemura
    • Journal Title

      Scientiae Mathematicae Japonicae Online e-2007

      Pages: 63-89

    • NAID

      10019758757

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] GREEN FUNCTION FOR BOUNDARY VALUE PROBLEM OF 2M-TH ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS WITH OPEN BOUNDARY CONDITION2007

    • Author(s)
      A.Nagai, K.Takemura, Y.Kametaka, K.Watanabe, H.Yamagishi
    • Journal Title

      Far East Journal of Applied Mathematics Volume 26, No. 3

      Pages: 393-406

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] POSITIVITY AND HIERARCHICAL STRUCTURE OF GREEN FUNCTIONS FOR BENDING OF A BEAM : BOUNDARY VALUE PROBLEMS WITH BOUNDARY CONDITIONS OF NOT SIMPLE TYPE2007

    • Author(s)
      K.Takemura, Y.Kametaka, A.Nagai, N.D.Kopachevsky
    • Journal Title

      Far East Journal of Mathematical Sciences vol. 25 no. 2

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] The best constant of Sobolev inequality corresponding to the periodic boundary value problem for (-1)^M(d/dx)^{2M}2007

    • Author(s)
      Y.Kametaka, Y.Oshime, K.Watanabe, H.Yamagishi, A.Nagai, K.Takemura
    • Journal Title

      Scientiae Mathematicae Japonicae Online e-2007

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] The best constant of Sobolev inequality which correspond to a bending problem of a string with periodic boundary condition2007

    • Author(s)
      Y.Kametaka, K.Watanabe, A.Nagai, H.Yamagishi, K.Takemura
    • Journal Title

      Scientiae Mathematicae Japonicae Online e-2007

    • NAID

      10019758321

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] GREEN FUNCTION FOR BOUNDARY VALUE PROBLEM OF 2M-TH ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS WITH OPEN BOUNDARY CONDITION2007

    • Author(s)
      A.Nagai, K.Takemura, Y.Kametaka, K.Watanabe, H.Yamagishi
    • Journal Title

      Far East Journal of Applied Mathematics Volume 26,No. 3

      Pages: 393-406

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] GREEN FUNCTION FOR BOUNDARY VALUE PLOBREM OF 2M-YH ORDER LINEAR ORDINARY DIFFRRENTIAL EQUATION WITH OPEN BOUNDARY CONDITION2007

    • Author(s)
      A.Nagai, K.Takemura, Y.Kametaka, K.Watanabe, H.Yamagishi
    • Journal Title

      Far East Journal of Applied Mathematics Volume 26・No. 3

      Pages: 393-406

    • Related Report
      2006 Annual Research Report
  • [Journal Article] RIEMANN ZETA FUNCRION, BERNOULLI POLYNOMIALS AND THE BEST CONSTANT OF SOBOLEW INEQUALITY2007

    • Author(s)
      Y.Kametaka, H.Yamagishi, K.Watanabe, A.Nagai, K.Takemura
    • Journal Title

      Scientiae Mathematicae Japonicae Online e-2007

      Pages: 63-89

    • Related Report
      2006 Annual Research Report
  • [Journal Article] 離散ベルヌイ多項式と離散ソボレフ不等式の最良定数2006

    • Author(s)
      永井敦, 亀高惟倫, 山岸弘幸, 竹村一雄, 渡辺宏太郎
    • Journal Title

      応用力学研究所研究集会報告「非線形波動および非線形力月系の現象と数理」 No, 17ME-S2

    • Related Report
      2006 Annual Research Report
  • [Journal Article] The best constant of Sobolev inequality in an n dimensional Euclidean space2005

    • Author(s)
      Y.Kametaka, K.Watanabe, A.Nagai
    • Journal Title

      Prodeedings of the Japan Academy Vol. 81, Ser. A, No. 3

      Pages: 57-60

    • NAID

      10014491696

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] The best constant of Sobolev inequality in an n dimensional Euclidean space2005

    • Author(s)
      Y.Kametaka, K.Watanabe, A.Nagai
    • Journal Title

      Prodeedings of the Japan Academy Vol.81, Ser.A, No. 3

      Pages: 57-60

    • NAID

      10014491696

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary

URL: 

Published: 2005-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi