• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

双曲構造と球面構造の双対性

Research Project

Project/Area Number 17654016
Research Category

Grant-in-Aid for Exploratory Research

Allocation TypeSingle-year Grants
Research Field Geometry
Research InstitutionHiroshima University (2007)
Osaka University (2005-2006)

Principal Investigator

作間 誠  Hiroshima University, 大学院・理学研究科, 教授 (30178602)

Co-Investigator(Kenkyū-buntansha) 秋吉 宏尚  大阪市立大学, 大学院・理学研究科, 特任准教授 (80397611)
和田 昌昭  奈良女子大学, 理学部, 教授 (80192821)
山下 靖  奈良女子大学, 理学部, 准教授 (70239987)
大鹿 健一  大阪大学, 大学院・理学研究科, 教授 (70183225)
難波 誠  追手門学院大学, 経済学部, 教授 (60004462)
吉田 正章  九州大学, 大学院・数理学研究院, 教授 (30030787)
Project Period (FY) 2005 – 2007
Project Status Completed (Fiscal Year 2007)
Budget Amount *help
¥2,100,000 (Direct Cost: ¥2,100,000)
Fiscal Year 2007: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2006: ¥500,000 (Direct Cost: ¥500,000)
Fiscal Year 2005: ¥700,000 (Direct Cost: ¥700,000)
Keywords双曲構造 / 球面構造 / 双対性 / Cannon-Thurston map / 強可逆結び目 / 垣水複体 / Montesinos knot / virtual fiber / 擬フックス群 / 穴開トーラス / 錐多様体 / McShaneの等式 / ザイフェルト曲面
Research Abstract

(1)Cannon-Thurston Mapの研究
Warren Dicksとのe-mail文通により,穴あきトーラス束から生じるCannon-Thurston Mapに付随する平面のフラクタル分割と,標準的分割が導くカスプ三角形分割との間に自然な関係があることを証明した.現在共著論文を執筆中である.
(2)強可逆結び目の同変種数の研究
任意の周期的結び目は,周期写像で不変な最小種数ザイフェルト曲面を持つことがA.Edmondsにより証明されているが,強可逆結び目に対しては,対応する結果が成立しないことがわかる.しかし強可逆結び目に対して,対合で不変なザイフェルト曲面は存在するので,同変種数が定義出来る.この同変種数と通常の種数の差はいくらでも大きくなり得ることを証明した.この研究はToulouseで開催された国際研究集会で発表した.
(3)垣水複体の研究
垣水複体の単連結性を証明したJ.Schultensの議論を拡張することにより,K.Shackletonとの共同研究により,垣水複体の2次元ホモトピー群が消えていることを証明した.
(4)あるMontesinos結び目補空間のvirtual fiber性の証明
最近,Boyer-Zhangによりオイラー数が0であるMontesinos結び目補空間のvirtual fiber性が証明された.A'Campo-石川にdivide理論を応用することにより,オイラー数が0でないあるMontesinos結び目補空間のvirtual fiber性を証明した.

Report

(3 results)
  • 2007 Annual Research Report
  • 2006 Annual Research Report
  • 2005 Annual Research Report
  • Research Products

    (16 results)

All 2008 2007 2006 2005

All Journal Article (13 results) (of which Peer Reviewed: 1 results) Presentation (1 results) Book (2 results)

  • [Journal Article] Epimorphisms between 2-bridge knot groups2008

    • Author(s)
      T. Ohtski, R. Riley, M. Sakuma
    • Journal Title

      Geometry and Topology Monograph 1909(印刷中)

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Punctured forus groups and 2-bridge kont groups (I)2007

    • Author(s)
      H.Akiyoshi, H.Sakama, M.Woda, Y.Yawashita
    • Journal Title

      Lecture Notes in Mathematics, Springer-Venlag (印刷中)

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Epimorphisms between 2-bridge knot groups.2007

    • Author(s)
      T.Ohtsuki, R.Rileg, M.Sakuma
    • Journal Title

      geometry Topology Monograph (印刷中)

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Epimorphisms between 2-bridge kont groups from the view point of Markoft mps2007

    • Author(s)
      M.Sakuma
    • Journal Title

      Proc. of the workshop, Intelligence of lowdim. topology (印刷中)

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Variation of Meshane's identify for punctuced surface groups2006

    • Author(s)
      H.Akiyoshi, H.Miyachi, H.Sakama
    • Journal Title

      London Math. Soc. Lect. Notes Sezies 329

      Pages: 151-185

    • Related Report
      2006 Annual Research Report
  • [Journal Article] On topologically tame Kleinian groups with bounded geometry2006

    • Author(s)
      K.Ohshika, H.Miyachi
    • Journal Title

      London Math. Soc. Lecture Notes Secies 329

      Pages: 29-48

    • Related Report
      2006 Annual Research Report
  • [Journal Article] OPTi's algorithm for disaeteness determination2006

    • Author(s)
      M.Wada
    • Journal Title

      Experiment. Math. 15・1

      Pages: 61-66

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Variations of McShanes identity for punctured torus groups2006

    • Author(s)
      H.Akiyoshi, H.Miyachi, M.Wada
    • Journal Title

      London Math.Soc.Lecture Note Series (印刷中)

    • Related Report
      2005 Annual Research Report
  • [Journal Article] OPTi's algorithm for discreteness determination2006

    • Author(s)
      M.Wada
    • Journal Title

      Experimental Mathematics (出版予定)

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Drawing Bers Embeddings of the Teichmuller space of once-punctured tori2006

    • Author(s)
      Y.Komori, T.Sugawa, M.Wada, Y.Yamashita
    • Journal Title

      Experimental Mathematics (出版予定)

    • NAID

      110000164658

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Twisted Alexander polynomials and surjectivity of a group homomorphism2005

    • Author(s)
      T.Kitano, M.Suzuki, M.Wada
    • Journal Title

      Algebraic & Geometric Topology 5

      Pages: 1315-1324

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Kleinian groups which are limits of geometrically finite groups2005

    • Author(s)
      K.Ohshika
    • Journal Title

      Mem.Amer Math Soc. 177・834

      Pages: 1-116

    • Related Report
      2005 Annual Research Report
  • [Journal Article] The continuity of convex cores with respect to the geometric topology2005

    • Author(s)
      K.Ohshika
    • Journal Title

      Comm.Anal.Geom 13・3

      Pages: 479-510

    • Related Report
      2005 Annual Research Report
  • [Presentation] On the distance between two Seifert surfaces of a knot2007

    • Author(s)
      M. Sakuma
    • Organizer
      Geometric Topology Conference-Beijing 2007
    • Place of Presentation
      北京大学
    • Year and Date
      2007-06-19
    • Related Report
      2007 Annual Research Report
  • [Book] Punctured torus groups and 2-bridge knot groups (I), Lecture Notes in Mathematics Vol 19092007

    • Author(s)
      H. Akiyoshi, M. Sakuma, M. Wada, Y. Yamashita
    • Total Pages
      295
    • Publisher
      Springer Verlag
    • Related Report
      2007 Annual Research Report
  • [Book] Spaces of Kleimian groups2006

    • Author(s)
      Y.Hinsky, M.Sakama, L.Seiries
    • Total Pages
      390
    • Publisher
      Cambridge University Press
    • Related Report
      2006 Annual Research Report

URL: 

Published: 2005-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi