• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

高次元放物型不動点の漸近解析の研究

Research Project

Project/Area Number 17654031
Research Category

Grant-in-Aid for Exploratory Research

Allocation TypeSingle-year Grants
Research Field Basic analysis
Research InstitutionKyoto University

Principal Investigator

上田 哲生  Kyoto University, 大学院・理学研究科, 教授 (10127053)

Co-Investigator(Kenkyū-buntansha) 宍倉 光広 (宍倉 光宏)  京都大学, 大学院・理学研究科, 教授 (70192606)
宇敷 重廣  京都大学, 大学院・人間・環境学研究科, 教授 (10093197)
Project Period (FY) 2005 – 2007
Project Status Completed (Fiscal Year 2007)
Budget Amount *help
¥3,200,000 (Direct Cost: ¥3,200,000)
Fiscal Year 2007: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2006: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2005: ¥1,200,000 (Direct Cost: ¥1,200,000)
Keywords複素力学系 / 放物型不動点 / ファトゥ座標 / エノン写像 / 安定多様体 / 除去可能特異点
Research Abstract

前年度までに引き続き,多変数複素力学系の局所理論とこれに関連する研究を行った. (1)2変数半放物型不動点とその摂動に関してEric Bedford(Indiana Univ.)との共同研究を行った.2変数半放物型不動点に対して,その収束領域とその上のファトゥ座標,およびその逆写像に関する安定集合である漸近不変曲線の構造を明らかにした.また半放物的不動点の分岐に対して,これを精密に近似するファトゥ座標を構成し,これを用いて点の挙動の評価を与え,Lavours写像の構成およびimplosionに関しても1変数と同様の現象が起こることを確かめた.これは現在も進行中であり,その完成に向けて研究を続けている.
(2)不動点をもつ1変数写像の族に放物型不動点におけるFatou座標がその摂動である吸引不動点に対する線形化座標のある種の極限として得られることを示した.この結果はPub1.RIMS Kyoto Univ.に発表された.さらにこの結果の多変数化を目指して研究を進めている. (3)一般次元複素射影空間の上の正則写像から生ずる力学系に関して,ファトゥ集合の一般化としてファトウ写像を定義される.円板から対数容量が零の閉集合(極集合)を除いた領域から複素射影空間の中への正則写像がファトゥ写像であれば,それが円板全体の上のファトウ写像にまで拡張できることを示した.またこの応用として,2次元射影空間におけるファトゥ集合の分類に関するFornaess-Sibonyの定理において穴あき円板を極限とするものが存在しないことを示した.この結果はMIchigan Math. J.に刊行予定である.

Report

(3 results)
  • 2007 Annual Research Report
  • 2006 Annual Research Report
  • 2005 Annual Research Report
  • Research Products

    (6 results)

All 2008 2007 2006

All Journal Article (3 results) (of which Peer Reviewed: 2 results) Presentation (3 results)

  • [Journal Article] Simultaneous linearizations of holomorphic maps with hyperbolic and parabolic fixed points2008

    • Author(s)
      Tetsuo Ueda
    • Journal Title

      Publ. RIMS Kyoto Univ. 44

      Pages: 91-105

    • NAID

      110006574490

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Holomorphic maps on projective spaces and continuations of Fatou maps2008

    • Author(s)
      Tetsuo Ueda
    • Journal Title

      Michigan Mathematical. Journal 56(to appear)

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Simultaneous linearization of hyperbolic and parabolic fixed points2006

    • Author(s)
      上田哲生
    • Journal Title

      数理解析研究所講究録 1494

      Pages: 1-8

    • Related Report
      2006 Annual Research Report
  • [Presentation] 射影空間上の複素力学系-Fatou集合の関数論的性質2007

    • Author(s)
      上田 哲生
    • Organizer
      多変数関数論冬セミナー
    • Place of Presentation
      富山大学
    • Year and Date
      2007-12-23
    • Related Report
      2007 Annual Research Report
  • [Presentation] 複素射影空間上の力学系に関するFatou写像の接続2007

    • Author(s)
      上田 哲生
    • Organizer
      日本数学会秋季総合分科会
    • Place of Presentation
      東北大学
    • Year and Date
      2007-09-24
    • Related Report
      2007 Annual Research Report
  • [Presentation] Holomorphic dynamics on projective spaces and continuation of Fatou maps2007

    • Author(s)
      Tetsuo Ueda
    • Organizer
      The 8th International Conference on Several Complex Variables
    • Place of Presentation
      Kolon Hotel (Korea)
    • Year and Date
      2007-07-03
    • Related Report
      2007 Annual Research Report

URL: 

Published: 2005-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi