• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

特徴空間の構造の解明とパターン認識に適したカーネルの開発

Research Project

Project/Area Number 17656130
Research Category

Grant-in-Aid for Exploratory Research

Allocation TypeSingle-year Grants
Research Field System engineering
Research InstitutionKobe University

Principal Investigator

阿部 重夫  Kobe University, 工学研究科, 教授 (50294195)

Project Period (FY) 2005 – 2007
Project Status Completed (Fiscal Year 2007)
Budget Amount *help
¥3,200,000 (Direct Cost: ¥3,200,000)
Fiscal Year 2007: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2006: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2005: ¥1,200,000 (Direct Cost: ¥1,200,000)
Keywordsパターン認識 / サポートベクトルマシン / 特徴空間 / 標本特徴空間 / カーネル / マハラノビスカーネル
Research Abstract

特徴空間は無限次元となりうるが,これに等価な標本特徴空間は最大でも教師データ数の次元の空間になる.この特徴を使って前年度に最小自乗サポートベクトルマシン(LS SVM)のスパース化を実現する方式を開発したが,今年度はさらにスパース化の研究を進め,以下の結論を得た.
(1)前年度開発したスパースLS SVMは標本特徴空間で主問題を解いていたが,標本特徴空間で双対問題を解く方式を開発し,両者の違いを数値的安定性および学習速度の観点から解析し,双対問題で解くと数値的不安定が生じることを明らかにした.
(2)スパースLS SVMを関数近似に拡張した.すなわちカーネルマトリックスをコレスキー分解する際に0判定を緩めることにより,一次独立になるデータ数を制限して縮小標本空間を作成する.さらにこの空間内で関数近似器を学習することによりスパースLS SVR(Support Vector Regressor)を実現した.
(2)スパースLS SVMではコレースキー分解により,特徴空間を縮小していたが,これでは分離に必要なデータを削除する可能性がある.このために標本特徴空間でDiscriminant Analysisを行うことにより分離に必要なデータを選択する方式を開発した.これにより,コレスキー分解で求めたスパースLS SVMよりさらにスパース性を向上することができた.
(3)通常のSVMを縮小標本特徴空間で双対問題で学習する方式を開発した.これにより,分離が難しい問題で通常のSVMよりさらにスパース性が向上することを確認した.

Report

(3 results)
  • 2007 Annual Research Report
  • 2006 Annual Research Report
  • 2005 Annual Research Report
  • Research Products

    (13 results)

All 2008 2007 2006 2005 Other

All Journal Article (12 results) (of which Peer Reviewed: 5 results) Book (1 results)

  • [Journal Article] Sparse Least Squares Support Vector Training in the Reduced Empirical Feature Space2007

    • Author(s)
      Shigeo Abe
    • Journal Title

      Pattern Analysis & Applications 11

      Pages: 203-214

    • NAID

      120000945576

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Optimizing Kernel Parameters by Second-Order Methods2007

    • Author(s)
      Shigeo Abe
    • Journal Title

      Proc. European Symposium on Artificial Neural Networks (ESANN 2007)

      Pages: 259-264

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Sparse Least Squares Support Vector Regressors Trained in the Reduced Empirical Fcature Space2007

    • Author(s)
      Shigeo Abe
    • Journal Title

      International Conference on Neural Networks (ICANN 2007) Part II

      Pages: 180-189

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Incremental Training of Support Vector Machines Using Hyperspheres2006

    • Author(s)
      Shinya Katagiri
    • Journal Title

      Pattern Recognition Letters 27(13)

      Pages: 1495-1507

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Implementing Multi-class Classifiers by One-class Classification Methods2006

    • Author(s)
      Tao Ban
    • Journal Title

      Proc. International Joint Conference on Neural Networks

      Pages: 719-724

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Support Vector Regression Using Mahalanobis Kernels2006

    • Author(s)
      Yuya Kamada
    • Journal Title

      Proc. Second IAPR TC3 Workshop on Artificial Neural Networks in Pattern Recognition (ANNPR 2006)

      Pages: 144-152

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Fast Training of Linear Programming Support Vector Machines Using Decomposition Techniques2006

    • Author(s)
      Yusuke Torii
    • Journal Title

      Proc. Second IAPR TC3 Workshop on Artificial Neural Networks in Pattern Recognition (ANNPR 2006)

      Pages: 165-176

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Feature Selection Based on Kernel Discriminant Analysis2006

    • Author(s)
      Masamichi Ashihara
    • Journal Title

      Proc. International Conference on Artificial Neural Networks (ICANN 2006) 2

      Pages: 282-291

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Training of Support Vector Machines with Mahalanobis Kernels2005

    • Author(s)
      Shigeo Abe
    • Journal Title

      Proc.ICANN 2005 第2巻

      Pages: 571-576

    • NAID

      120000945452

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Comparison of sparse least squares support regressors trained in primal and dual

    • Author(s)
      Shigeo Abe
    • Journal Title

      Proc. European Symposium on Artificial Neural Networks (ESANN 2008) (印刷中)

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Sparse Support Vector Machines Trained in the Reduced Empirical Feature Space

    • Author(s)
      Kazuki Iwamura
    • Journal Title

      Proc. International Joint Conference on Neural Networks (印刷中)

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Sparse Least Squares Support Vector Training in the Reduced Empirical Feature Space

    • Author(s)
      Shigeo Abe
    • Journal Title

      Pattern Analysis & Applications (印刷中)

    • NAID

      120000945576

    • Related Report
      2006 Annual Research Report
  • [Book] Optimizing Mahalanobis Kernels for Pattern Classification, In Pattern Recognition: Theory and Application2008

    • Author(s)
      Shigeo Abe
    • Publisher
      Nova Science Publishers
    • Related Report
      2007 Annual Research Report

URL: 

Published: 2005-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi